JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-9352.0.2020.687
LI Yuan-fei, LI Dan-dan, CHEN Xue-jiao, SHI Jin-cheng
CLC Number:
[1] LIESS O. Necessary conditions in Phragmén-Lindelöf type estimates and decomposition of holomorphic functions[J]. Mathematische Nachrichten, 2017, 290(8/9):1328-1346. [2] PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelöf type results for the biharmonic equation[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1994, 45(3):414-432. [3] MARKOWSKY G. The exit time of planar Brownian motion and the Phragmén-Lindelöf principle[J]. Journal of Mathematical Analysis & Applications, 2013, 422(1):638-645. [4] GENTILI G, STOPPATO C, STRUPPA D C. A Phragmén-Lindelöf principle for slice regular functions[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2009, 18(4):749-759. [5] LIU Yan, LIN Changhao. Phragmén-Lindelöf alternative type alternative results for the stokes flow equation[J]. Mathematical Inequalities & Applications, 2006, 9(4):671-694. [6] 李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学,2020,41(4):406-419. LI Yuanfei. Phragmén-Lindelöf type results for non-standard Stokes flow equations around semi-infinite cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4):406-419. [7] HORGAN C O, PAYNE L E. Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions[J]. Archive for Rational Mechanics and Analysis, 1993, 122(2):123-144. [8] 李远飞,李志青.具有非线性边界条件的瞬态热传导方程的二择一结果[J].数学物理学报,2020,40A(5): 1248-1258. LI Yuanfei, LI Zhiqing. Phragmén-Lindelöf type Results for transient heat conduction equation with nonlinear boundary conditions[J]. Acta Mathematica Scientia, 2020, 40A(5):1248-1258. [9] LESEDUARTE M C, QUINATANILLA R. Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions[J]. Journal of Applied Analysis and Computation, 2017, 7(4):1323-1335. [10] 李远飞,肖胜中,郭连红,等.一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果[J].吉林大学学报(理学版),2020,58(5):1047-1054. LI Yuanfei, XIAO Shengzhong, GUO Lianhong, et al. Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations[J]. Journal of Jilin University(Science Edition), 2020, 58(5):1047-1054. [11] 李远飞,陈雪姣,石金诚.二元混合物中的热传导方程Phragmén-Lindelöf二择性[J].山东大学学报(理学版),2020,55(12):1-12,24. LI Yuanfei, CHEN Xuejiao, SHI Jincheng. Phragmén-Lindelöf alternative for the heat conduction equations in a binary mixture[J]. Journal of Shandong University(Natual Science), 2020, 55(12):1-12,24. [12] JAVIER J G, JAVIER S, GERHARD S. A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics[J]. The Journal of Geometric Analysis, 2019, 2019(5):1-26. [13] TATEYAMA S. The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully nonlinear parabolic equations with unbounded ingredients[J]. Journal of Mathematical Pures and Applications, 2020, 133(2):172-184. [14] HORGAN C O, PAYNE L E. Decay estimates for second order quasilinear partial differential equations[J]. Advance in Appl Math, 1984, 5(3):309-332. [15] LIN Changhao. A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in R3[J]. Acta Mathematica Scientia, 1996, 16(2):181-191. [16] CIALET P G. Mathematical elasticity [M]. Amsterdam: North-Holland Press, 1988. [17] HORGAN C O, QUINATANILLA R. Spatial decay of transient end effects for nonstandard linear diffusion problems[J]. IMA Journal of Applied Mathematics, 2005, 70(1):119-128. |
[1] | LI Yuan-fei, CHEN Xue-jiao, SHI Jin-cheng. Phragmén-Lindelof alternative for the heat conduction equations in a binary mixture [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 1-12. |
[2] | CHEN Ya-wen, XIONG Xiang-tuan. Fractional Tikhonov method of a non-characteristic Cauchy problem for a parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 120-126. |
[3] | WANG Jun-fang, ZHAO Pei-hao. Comparison principles for viscosity solution of fully nonlinear parabolic equations with superlinear gradient nonlinearities [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 77-83. |
[4] | ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42. |
[5] | SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47. |
[6] | LIU Yang, DA Chao-jiu, LI Fu-ming. Nehari manifold and application to blow-up for a class of semilinear parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 123-127. |
[7] | FANG Bao-yan1, WANG Zhi-gang2, TIAN Shuang-liang1*, SU Li-jun2. The existence and uniqueness of the solution of parabolic equations with wavelet collocation [J]. J4, 2010, 45(6): 65-69. |
[8] | . A highorder parallel difference scheme for a parabolic equation [J]. J4, 2009, 44(2): 39-44. |
[9] | FENG Qing-hua . An alternating group method for four order parabolic equations [J]. J4, 2007, 42(8): 79-82 . |
[10] | WANG Ting . School of Math. and System Sci., Shandong Univ., Jinan 250100, Shandong, China [J]. J4, 2006, 41(6): 51-56 . |
|