JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-9352.0.2020.687

   

Alternative results of a class of quasilinear transient parabolic equations

LI Yuan-fei, LI Dan-dan, CHEN Xue-jiao, SHI Jin-cheng   

  1. School of Data Science, Huashang College Guangdong University of Finance &
    Economics, Guangzhou 511300, Guangdong, China
  • Published:2021-06-03

Abstract: In this paper, the spatial Phragmén-Lindelöf type alternative of solutions for quasilinear parabolic systems satisfying nonlinear dynamic conditions on the side of the cylinder is considered. By using the technique of differential inequality, it is proved that the solution increases exponentially or decays exponentially with spatial variables. By setting an arbitrary positive constant, more accurate decay rate and growth rate are obtained. Finally, the alternative theorem is extended to the heat equation in binary mixtures.

Key words: parabolic equation, Phragmén-Lindelö, f alternative, Young inequality, nonlinear dynamic system

CLC Number: 

  • O175.26
[1] LIESS O. Necessary conditions in Phragmén-Lindelöf type estimates and decomposition of holomorphic functions[J]. Mathematische Nachrichten, 2017, 290(8/9):1328-1346.
[2] PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelöf type results for the biharmonic equation[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1994, 45(3):414-432.
[3] MARKOWSKY G. The exit time of planar Brownian motion and the Phragmén-Lindelöf principle[J]. Journal of Mathematical Analysis & Applications, 2013, 422(1):638-645.
[4] GENTILI G, STOPPATO C, STRUPPA D C. A Phragmén-Lindelöf principle for slice regular functions[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2009, 18(4):749-759.
[5] LIU Yan, LIN Changhao. Phragmén-Lindelöf alternative type alternative results for the stokes flow equation[J]. Mathematical Inequalities & Applications, 2006, 9(4):671-694.
[6] 李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学,2020,41(4):406-419. LI Yuanfei. Phragmén-Lindelöf type results for non-standard Stokes flow equations around semi-infinite cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4):406-419.
[7] HORGAN C O, PAYNE L E. Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions[J]. Archive for Rational Mechanics and Analysis, 1993, 122(2):123-144.
[8] 李远飞,李志青.具有非线性边界条件的瞬态热传导方程的二择一结果[J].数学物理学报,2020,40A(5): 1248-1258. LI Yuanfei, LI Zhiqing. Phragmén-Lindelöf type Results for transient heat conduction equation with nonlinear boundary conditions[J]. Acta Mathematica Scientia, 2020, 40A(5):1248-1258.
[9] LESEDUARTE M C, QUINATANILLA R. Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions[J]. Journal of Applied Analysis and Computation, 2017, 7(4):1323-1335.
[10] 李远飞,肖胜中,郭连红,等.一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果[J].吉林大学学报(理学版),2020,58(5):1047-1054. LI Yuanfei, XIAO Shengzhong, GUO Lianhong, et al. Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations[J]. Journal of Jilin University(Science Edition), 2020, 58(5):1047-1054.
[11] 李远飞,陈雪姣,石金诚.二元混合物中的热传导方程Phragmén-Lindelöf二择性[J].山东大学学报(理学版),2020,55(12):1-12,24. LI Yuanfei, CHEN Xuejiao, SHI Jincheng. Phragmén-Lindelöf alternative for the heat conduction equations in a binary mixture[J]. Journal of Shandong University(Natual Science), 2020, 55(12):1-12,24.
[12] JAVIER J G, JAVIER S, GERHARD S. A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics[J]. The Journal of Geometric Analysis, 2019, 2019(5):1-26.
[13] TATEYAMA S. The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully nonlinear parabolic equations with unbounded ingredients[J]. Journal of Mathematical Pures and Applications, 2020, 133(2):172-184.
[14] HORGAN C O, PAYNE L E. Decay estimates for second order quasilinear partial differential equations[J]. Advance in Appl Math, 1984, 5(3):309-332.
[15] LIN Changhao. A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in R3[J]. Acta Mathematica Scientia, 1996, 16(2):181-191.
[16] CIALET P G. Mathematical elasticity [M]. Amsterdam: North-Holland Press, 1988.
[17] HORGAN C O, QUINATANILLA R. Spatial decay of transient end effects for nonstandard linear diffusion problems[J]. IMA Journal of Applied Mathematics, 2005, 70(1):119-128.
[1] LI Yuan-fei, CHEN Xue-jiao, SHI Jin-cheng. Phragmén-Lindelof alternative for the heat conduction equations in a binary mixture [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 1-12.
[2] CHEN Ya-wen, XIONG Xiang-tuan. Fractional Tikhonov method of a non-characteristic Cauchy problem for a parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 120-126.
[3] WANG Jun-fang, ZHAO Pei-hao. Comparison principles for viscosity solution of fully nonlinear parabolic equations with superlinear gradient nonlinearities [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 77-83.
[4] ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42.
[5] SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47.
[6] LIU Yang, DA Chao-jiu, LI Fu-ming. Nehari manifold and application to blow-up for a class of semilinear parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 123-127.
[7] FANG Bao-yan1, WANG Zhi-gang2, TIAN Shuang-liang1*, SU Li-jun2. The existence and uniqueness of the solution of parabolic equations with wavelet collocation [J]. J4, 2010, 45(6): 65-69.
[8] . A highorder parallel difference scheme for a parabolic equation [J]. J4, 2009, 44(2): 39-44.
[9] FENG Qing-hua . An alternating group method for four order parabolic equations [J]. J4, 2007, 42(8): 79-82 .
[10] WANG Ting . School of Math. and System Sci., Shandong Univ., Jinan 250100, Shandong, China [J]. J4, 2006, 41(6): 51-56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!