JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 42-46.doi: 10.6040/j.issn.1671-9352.0.2020.542
JIANG Rui-ting1, ZHAI Cheng-bo2*
CLC Number:
[1] RELLICH F, BERKOWITZ J. Perturbation theory of eigenvalue problems[M]. New York: Gordon and Breach, 1969. [2] JANNELLI E, LOIUDICE A. Critical polyharmonic problems with singular nonlinearities[J]. Nonlinear Analysis, 2014, 110(1):77-96. [3] JANNELLI E. Critical behavior for the polyharmonic operator with Hardy potential[J]. Nonlinear Analysis: Theory, Method and Application, 2015, 119(1):443-456. [4] KANG Dongsheng, XU Liangshun. Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials[J]. Journal of Mathematical Analysis and Applications, 2017, 455(2):1365-1382. [5] 郭玉霞, 唐仲伟, 汪路顺. 带深井位势双调和方程的解[J]. 中国科学:数学, 2019, 49(1):21-38. GUO Yuxia, TANG Zhongwei, WANG Lushun. Solutions of biharmonic equations with steep potential wells[J]. Scientia Sinica Mathematics, 2019, 49(1):21-38. [6] BRÉZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4):437-477. |
[1] | CHEN Li-zhen, FENG Xiao-jing, LI Gang. Existence of nontrival solutions for a class of Schrödinger-Poisson systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 74-78. |
[2] | CHEN Lin. Existence of positive solution for a class of N-Kirchhoff type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 40-48. |
[3] | CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62. |
|