JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 64-73.doi: 10.6040/j.issn.1671-9352.0.2020.582
QI Bin, CHENG Hao*
CLC Number:
[1] SUN Hongguang, CHEN Wen, LI Changping, et al. Fractional differential models for anomalous diffusion[J]. Physica A, 2010, 389(14):2719-2724. [2] LIU F W, MEERSCHAERT M M, MCGOUGH R J, et al. Numerical methods for solving the multi-term time-fractional wave-diffusion equation[J]. Fractional Calculus and Applied Analysis, 2013, 16(1):9-25. [3] MAINARDI F. The fundamental solutions for the fractional diffusion-wave equation[J]. Applied Mathematics Letters, 1996, 9(6):23-28. [4] DU Rui, CAO Wanrong, SUN Zhizhong. A compact difference scheme for the fractional diffusion-wave equation[J]. Applied Mathematical Modelling, 2010, 34(10):2998-3007. [5] HU G H, LIU Y K, YAMAMOTO M. Inverse moving source problem for fractional diffusion(-wave)equations: determination of orbits[J]. Inverse Problems and Related Topics, 2020, 310:81-100. [6] SAKAMOTO K, YAMAMOTO M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[J]. Journal of Mathematical Analysis and Applications, 2011, 382(1):426-447. [7] JIANG Suzhen, LIAO Kaifang, WEI Ting. Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data[J]. Computational Methods in Applied Mathematics, 2020, 20(1):109-120. [8] YANG Fan, PU Qu, LI Xiaoxiao, et al. The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave equations[J]. Mathematics, 2019, 7(11):1007. [9] LI Gongsheng, ZHANG Dali, JIA Xianzheng, et al. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation[J]. Inverse Problems, 2013, 29(6):65014-65049. [10] GONG Xuhong, WEI Ting. Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation[J]. Inverse Problems in Science and Engineering, 2019, 27(11):1577-1594. [11] YAN Xiongbin, WEi Ting. Determine a space-dependent source term in a time fractional diffusion-wave equation[J]. Acta Applicandae Mathematicae, 2020, 165(1):163-181. [12] YANG Fan, WANG Ni, LI Xiaoxiao. Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain[J]. Journal of Applied Analysis and Computation, 2020, 10(2):514-529. [13] LONG L D, LUC N H, ZHOU Y, et al. Identification of source term for the time-fractional diffusion-wave equation by fractional Tikhonov method[J]. Mathematics, 2019, 7(10):934. [14] WANG Jungang, Ran Yuhong. An iterative method for an inverse source problem of time-fractional diffusion equation[J]. Inverse Problems in Scienceand Engineering, 2018, 26(10):1509-1521. [15] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999. [16] DENG Youjun, LIU Zhenhai. Iteration methods on sideways parabolic equations[J]. Inverse Problems, 2009, 25(9):095004. [17] 李晓婷.时间分数阶扩散波方程的反源项问题[D]. 兰州:兰州大学,2017. LI Xiaoting. Inverse source problem for a time fractional diffusion-wave equation[D]. Lanzhou: Lanzhou University, 2017. |
|