JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 81-94.doi: 10.6040/j.issn.1671-9352.0.2021.136
WANG Zeng-zhen, LIU Hua-yong*, ZHA Dong-dong
CLC Number:
[1] 齐东旭,田自贤,张玉心,等. 曲线拟合的数值磨光方法[J]. 数学学报,1975,18(3):173-184. QI Dongxu, TIAN Zixian, ZHANG Yuxin, et al. The method of numeric polish in curve fitting[J]. Acta Mathematica Sinica, 1975, 18(3):173-184. [2] DE BOOR C. How does Agees smoothing method work?[R/OL]. 1979[2021-04-26]. https://ftp.cs.wisc.edu/Approx/agee.pdf. [3] DELGADO J, PENA J M. Progressive iterative approximation and bases with the fastest convergence rates[J]. Computer Aided Geometric Design, 2007, 24(1):10-18. [4] LIN Hongwei, BAO Hujun, WANG Guojin. Totally positive bases and progressive iteration approximation[J]. Computer & Mathematics with Applications, 2005, 50(3/4):575-586. [5] LU Lizheng. Weighted progressive iteration approximation and convergence analysis[J]. Computer Aided Geometric Design, 2010, 27(2):129-137. [6] 刘晓艳, 邓重阳. 非均匀三次B样条曲线插值的Jacobi-PIA算法[J]. 计算机辅助设计与图形学学报,2015, 27(3):484-491. LIU Xiaoyan, DENG Chongyang. Jacobi-PIA algorithm for non-uniform cubic B-spline curve interpolation[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(3):484-491. [7] 张莉, 陆中华, 赵林, 等. 带多权值局部插值型的几何迭代法[J]. 计算机辅助设计与图形学学报, 2018, 30(9):1699-1704. ZHANG Li, LU Zhonghua, ZHAO Lin, et al. Local interpolation type of geometric iterative method with multiple weights[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9):1699-1704. [8] 韩旭里, 刘圣军. 三次均匀B样条的扩展[J].计算机辅助设计与图形学学报, 2003, 15(5):576-578. HAN Xuli, LIU Shengjun. An extension of the cubic uniform B-spline curve[J]. Journal of Computer-Aided Design & Computer Graphics, 2003, 15(5):576-578. [9] 刘成志, 韩旭里, 李军成. 三次均匀B样条扩展曲线的渐进迭代逼近法[J]. 计算机辅助设计与图形学学报, 2019, 31(6):899-910. LIU Chengzhi, HAN Xuli, LI Juncheng. Progressive-iterative approximation by extension of cubic uniform B-spline curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6):899-910. [10] Barsky B A. Computer graphics and geometric modeling using beta-splines[J]. New York: Springer-Verlag, 1988:156. [11] 严兰兰. 带形状参数的三角曲线曲面[J]. 东华理工大学学报(自然科学版), 2012, 35(2):197-200. YAN Lanlan. Trigonometric curves and surfaces with shape parameters[J]. Journal of East China Institute of Technology(Natural Science), 2012, 35(2):197-200. [12] 蔺宏伟.几何迭代法及其应用综述[J]. 计算机辅助设计与图形学学报, 2015, 27(4):582-589. LIN Hongwei. Survey on geometric iterative methods with applications[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(4):582-589. [13] 杨胜良. 三对角矩阵的特征值及其应用[J]. 数学的实践与认识,2010,40(3):155-160. YANG Shengliang. Eigenvalue of tridiagonal matric and its applications[J]. Mathematics in Practice and Theory, 2010, 40(3):155-160. [14] CARNICER J M, DELGADO J, PENA J M. Richardson method and totally nonnegative linera systems[J]. Linear Algebra and its Applications, 2010, 433(11/12):2010-2017. |
[1] | LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28. |
[2] | LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101-106. |
[3] | XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method [J]. J4, 2013, 48(4): 65-71. |
[4] | LIU Jun. Convergence rate of EM scheme for SDDEs with markovian jump [J]. J4, 2013, 48(3): 84-88. |
[5] | LIU Xiao-guang, CHANG Da-wei*. The optimal parameters of PSD method for rank deficient linear systems [J]. J4, 2011, 46(12): 13-18. |
[6] | ZOU Li-min1, JIANG You-yi1, HU Xing-kai2. A note on a conjecture on the Frobenius norm of matrices [J]. J4, 2010, 45(4): 48-50. |
[7] | . A new class of memory gradient methods with Wolfe line search [J]. J4, 2009, 44(7): 33-37. |
[8] | FENG Li-hua,YU Gui-hai . A Turan theorem relating to the spectral radius of a graph [J]. J4, 2008, 43(6): 31-33 . |
[9] | ZHANG Xin-dong ,WANG Qiu-hua . An improvement on the 2-order-derivative-free iterative method of Newton [J]. J4, 2007, 42(7): 72-76 . |
|