JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (6): 81-94.doi: 10.6040/j.issn.1671-9352.0.2021.136

Previous Articles    

Progressive-iterative approximation by the triangular β-B curves with shape parameter

WANG Zeng-zhen, LIU Hua-yong*, ZHA Dong-dong   

  1. Anhui Jianzhu University, Hefei 230601, Anhui, China
  • Published:2021-06-03

Abstract: In order to accelerate the convergence speed of the progressive-iterative approximation method and overcome the defect that the general B-spline curves cannot represent curves such as circles or ellipses, this paper discusses its(weighted)progressive-iterative approximation based on β-B curves. Compared with general cubic uniform polynomial B-spline curve, the former has better continuity. The iterative matrix of the(weighted)progressive-iterative approximation is obtained according to the selected β-B basis function. Based on the conclusion that the spectral radius is the smallest and the convergence speed is the fastest,the optimal shape parameters of the(weighted)progressive-iterative approximation and the optimal weight w of the weighted progressive-pterative approximation method are derived. Then this paper does convergence analysis on them respectively. Finally, numerical examples are given to analyze the iteration speed and iteration error when the shape parameters are different. The experimental results show that the convergence speed is the fastest when the shape parameter and weight are optimal.

Key words: β-B curve, progressive-iterative approximation, spectral radius, convergence rate

CLC Number: 

  • O241.5
[1] 齐东旭,田自贤,张玉心,等. 曲线拟合的数值磨光方法[J]. 数学学报,1975,18(3):173-184. QI Dongxu, TIAN Zixian, ZHANG Yuxin, et al. The method of numeric polish in curve fitting[J]. Acta Mathematica Sinica, 1975, 18(3):173-184.
[2] DE BOOR C. How does Agees smoothing method work?[R/OL]. 1979[2021-04-26]. https://ftp.cs.wisc.edu/Approx/agee.pdf.
[3] DELGADO J, PENA J M. Progressive iterative approximation and bases with the fastest convergence rates[J]. Computer Aided Geometric Design, 2007, 24(1):10-18.
[4] LIN Hongwei, BAO Hujun, WANG Guojin. Totally positive bases and progressive iteration approximation[J]. Computer & Mathematics with Applications, 2005, 50(3/4):575-586.
[5] LU Lizheng. Weighted progressive iteration approximation and convergence analysis[J]. Computer Aided Geometric Design, 2010, 27(2):129-137.
[6] 刘晓艳, 邓重阳. 非均匀三次B样条曲线插值的Jacobi-PIA算法[J]. 计算机辅助设计与图形学学报,2015, 27(3):484-491. LIU Xiaoyan, DENG Chongyang. Jacobi-PIA algorithm for non-uniform cubic B-spline curve interpolation[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(3):484-491.
[7] 张莉, 陆中华, 赵林, 等. 带多权值局部插值型的几何迭代法[J]. 计算机辅助设计与图形学学报, 2018, 30(9):1699-1704. ZHANG Li, LU Zhonghua, ZHAO Lin, et al. Local interpolation type of geometric iterative method with multiple weights[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9):1699-1704.
[8] 韩旭里, 刘圣军. 三次均匀B样条的扩展[J].计算机辅助设计与图形学学报, 2003, 15(5):576-578. HAN Xuli, LIU Shengjun. An extension of the cubic uniform B-spline curve[J]. Journal of Computer-Aided Design & Computer Graphics, 2003, 15(5):576-578.
[9] 刘成志, 韩旭里, 李军成. 三次均匀B样条扩展曲线的渐进迭代逼近法[J]. 计算机辅助设计与图形学学报, 2019, 31(6):899-910. LIU Chengzhi, HAN Xuli, LI Juncheng. Progressive-iterative approximation by extension of cubic uniform B-spline curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6):899-910.
[10] Barsky B A. Computer graphics and geometric modeling using beta-splines[J]. New York: Springer-Verlag, 1988:156.
[11] 严兰兰. 带形状参数的三角曲线曲面[J]. 东华理工大学学报(自然科学版), 2012, 35(2):197-200. YAN Lanlan. Trigonometric curves and surfaces with shape parameters[J]. Journal of East China Institute of Technology(Natural Science), 2012, 35(2):197-200.
[12] 蔺宏伟.几何迭代法及其应用综述[J]. 计算机辅助设计与图形学学报, 2015, 27(4):582-589. LIN Hongwei. Survey on geometric iterative methods with applications[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(4):582-589.
[13] 杨胜良. 三对角矩阵的特征值及其应用[J]. 数学的实践与认识,2010,40(3):155-160. YANG Shengliang. Eigenvalue of tridiagonal matric and its applications[J]. Mathematics in Practice and Theory, 2010, 40(3):155-160.
[14] CARNICER J M, DELGADO J, PENA J M. Richardson method and totally nonnegative linera systems[J]. Linear Algebra and its Applications, 2010, 433(11/12):2010-2017.
[1] LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28.
[2] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101-106.
[3] XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method [J]. J4, 2013, 48(4): 65-71.
[4] LIU Jun. Convergence rate of EM scheme for SDDEs with markovian jump [J]. J4, 2013, 48(3): 84-88.
[5] LIU Xiao-guang, CHANG Da-wei*. The optimal parameters of PSD method for rank deficient linear systems [J]. J4, 2011, 46(12): 13-18.
[6] ZOU Li-min1, JIANG You-yi1, HU Xing-kai2. A note on a conjecture on the Frobenius norm of matrices [J]. J4, 2010, 45(4): 48-50.
[7] . A new class of memory gradient methods with Wolfe line search [J]. J4, 2009, 44(7): 33-37.
[8] FENG Li-hua,YU Gui-hai . A Turan theorem relating to the spectral radius of a graph [J]. J4, 2008, 43(6): 31-33 .
[9] ZHANG Xin-dong ,WANG Qiu-hua . An improvement on the 2-order-derivative-free iterative method of Newton [J]. J4, 2007, 42(7): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!