JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (11): 50-57.doi: 10.6040/j.issn.1671-9352.0.2022.458
CHANG Qing, QI Qing-yuan*, LIU Zhi-qiang
CLC Number:
[1] MUTH J F. Rational expectations and the theory of price movements[J]. Econometrica, 1961, 29(3):315-335. [2] LUCAS R E. Expectations and the neutrality of money[J]. Journal of Economic Theory, 1972, 4(2):103-124. [3] CARRAVETTA F, SORGE M. A nearly ideal solution to linear time-varying rational expectations models[J]. Computational Economics, 2010, 35(4):331-353. [4] PENG S WANG Q Z, FU B Z. Exponential stabilization of chaotic systems based on fuzzy time-triggered intermittent control[J]. Chaos, Solitons & Fractals, 2022, 162:112390. [5] TAYLOR J B. Conditions for unique solutions in stochastic macroeconomic models with rational expectations[J]. Econometrica, 1977, 45(6):1377-1385. [6] BLANCHARD O J. Backward and forward solutions for economies with rational expectations[J]. The American Economic Review, 1979, 69(2):114-118. [7] BLANCHARD O J, KAHN C M. The solution of linear difference models under rational expectations[J]. Econometrica, 1980, 48(5):1305-1311. [8] BA??塁AR T, SALMON M. On the convergence of beliefs and policy to a rational expectations equilibrium in a dual policy problem[M] // Monetary Theory and Policy. Heidelberg: Springer, 1988: 207-223. [9] BA??塁AR T. Some thoughts on rational expectations models, and alternate formulations[J]. Computers & Mathematics with Applications, 1989, 18(6/7):591-604. [10] BA??塁AR T. Dynamic optimization of some forward-looking stochastic models[M] // Modeling and Control of Systems. Heidelberg: Springer, 1989: 313-336. [11] MA T F, XU J J, ZHANG H S, et al. Optimal control approach for rational expectations models with longer forward-looking time[C] //16th International Conference on Control, Automation, Robotics and Vision. Shenzhen: IEEE, 2020: 1041-1048. [12] YONG J, ZHOU X. Stochastic controls: Hamiltonian systems and HJB equations[M]. New York: Springer, 1999. [13] HASSIBI B, SAYED A H, KAILATH T. Indefinite-quadratic estimation and control: a unified approach to H2 and H∞ theories[M]. Philadelphia: SIAM, 1999. [14] XU J J, ZHANG H S, BA??塁AR T. Stackelberg solution for a two-agent rational expectations model[J]. Automatica, 2021, 129:109601. |
|