JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (3): 20-30.doi: 10.6040/j.issn.1671-9352.4.2021.034
YAN Chen-xu1, SHAO Hai-jian1,2*, DENG Xing1,2
CLC Number:
[1] 周俊宇,赵艳明.卷积神经网络在图像分类和目标检测应用综述[J]. 计算机工程与应用, 2017, 53(13):34-41. ZHOU Junyu, ZHOU Yanming. Application of convolution neural network in image classification and object detection[J]. Computer Engineering and Applications, 2017, 53(13):34-41. [2] 李忠海, 杨超, 梁书浩. 基于超像素分割和混合权值 AdaBoost 运动检测算法[J]. 电光与控制, 2018, 25(2):33-37. LI Zhonghai, YANG Chao, LIANG Shuhao. AdaBoost moving-target detection algorithm based on superpixel segmentation and mixed weight[J]. Electronics Optics & Control, 2018, 25(2):33-37. [3] 胡昭华, 张维新, 邵晓雯. 超像素特征的运动目标检测算法[J]. 控制理论与应用, 2017, 34(12):1568-1574. HU Zhaohua, ZHANG Weixin, SHAO Xiaowen. Moving object detection algorithm with superpixel features[J]. Control Theory & Applications, 2017, 34(12):1568-1574. [4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition(CVPR). San Diego: IEEE, 2005: 886-893. [5] LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection[C] //International Conference on Image Processing(ICIP). Rochester: IEEE, 2002: 900-903. [6] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition(CVPR). Kauai: IEEE, 2001: 511-518. [7] FELZENSZWALB P F, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition(CVPR). Anchorage: IEEE, 2008: 1-8. [8] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9):1627-1645. [9] CARREIRA J, AGRAWAL P, FRAGKIADAKI K, et al. Human pose estimation with iterative error feedback[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4733-4742. [10] 张顺, 龚一宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3):453-482. ZHANG Shun, GONG Yihong, WANG Jinjun. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3):453-482. [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmenta-teon[C] //Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. [12] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes(VOC)wchallenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [13] REN Shaoqing, HE Kaiming, GIRSHICK Ross, et al. Faster R-CNN: towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6):1137-1149. [14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [15] REDMON Joseph, FARHADI Ali. YOLO9000: better, faster, stronger[C] //2017 IEEE Conference on Computer Vision andPattern Recognition(CVPR). Honolulu: IEEE, 2017: 6517-6525. [16] REDMON Joseph, FARHADI Ali. YOLOv3: an incremental improvement[J/OL]. arXiv, 2018. https://arxiv.org/pdf/1804.02767.pdf. [17] DENG Z R, YANG R, LAN R S, et al. SE-IYOLOV3: an accurate small scale face detector for outdoor security[J]. Mathematics, 2020, 8(1): 93. [18] HURTIK Petr, MOLEK Vojtech, HULA Jan, et al. Poly-YOLO: higher speed, more precise detection and instance segmenta-tion for YOLOv3[J/OL]. arXiv, 2005. https://arxiv.org/pdf/2005.13243.pdf. [19] 张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9):2076-2086. ZHANG Dongming, JIN Guoqing, DAI Feng, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9):2076-2086. [20] ALI B, CHENG M M, HOU Q B, et al. Salient object detection: a survey[J]. Computational Visual Media, 2019, 5(2):117-150. [21] GAO Y, WANG M, TAO D C. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9):4290-4303. [22] ZHANG K, GUO Y R, WANG X S, et al. Channel-wise and feature-points reweights densenet for image classification[C] //Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 410-414. [23] BENJILALI W, GUICQUERO W, JACQUES L, et al. Hardware-friendly compressive imaging on the basis of random modulati-ons & permutations for image acquisition and classification[C] //Proceedings of the 2019 IEEE International Conferenceon Image Processing. Piscataway: IEEE, 2019: 2085-2089. [24] ZHANG Z Y, CUI Z, XU C Y, et al. Pattern-affinitive propagation across depth, surface normal and semantic segmenta-ti-on[C] //Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2019: 4106-4115. [25] DING H H, JIANG X D, SHUAI B, et al. Semantic correlation promoted shape-variant context for segmentation[C] //Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2019: 8885-8894. [26] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C] //Proceedings of the 32nd International Conference on Machine Learning. Lille: ACM, 2015: 597-606. [27] DI L, JI Y F, LISCHINSKI D, et al. Multi-scale context intertwining for semantic segmentation[C] //LNCS 11207: Proceedings of the 15th European Conference on Computer Vision. Berlin: Springer, 2018: 622-638. [28] CRAYE C, FILLIAT D, GOUDOU J F, et al. Environment exploration for object-based visual saliency learning[C] //Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm. Piscataway: IEEE, 2016: 2303-2309. |
[1] | GENG Wan-hai, CHEN Yi-ming, LIU Yu-feng, WANG Xiao-juan. The approximation of definite integration by using Haar wavelet and operator matrix [J]. J4, 2012, 47(4): 84-88. |
|