JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (3): 68-77.doi: 10.6040/j.issn.1671-9352.0.2021.418
WANG Liang, JING Kang-kang*, PENG Jia-hui, XU Wei
CLC Number:
[1] HONG Ling, XU Jianxue. Discontinuous bifurcations of chaotic attractors in forced oscillators by generalized cell mapping digraph(GCMD)method[J]. International Journal of Bifurcation and Chaos, 2001, 11(3):723-736. [2] WANG Liang, HUANG Mei, XU Wei, et al. The suppression of random parameter on the boundary crisis of the smooth and discontinuous oscillator system[J]. Nonlinear Dynamics, 2018, 92(3):1147-1156. [3] PANKAJ K, NARAYANANB S. Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers[J]. International Journal of Mechanical Sciences, 2017, 127:103-117. [4] 魏立祥,张建刚,南梦冉,等. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 山东大学学报(理学版),2021,56(5):12-22. WEI Lixiang, ZHANG Jiangang, NAN Mengran, et al. Stability and Hopf bifurcation of a flux neuron model with time delay[J]. Journal of Shandong University(Natural Science), 2021, 56(5):12-22. [5] HU Rongchun, GU Xudong, DENG Zicheng. Stochastic response analysis of multi-degree-of freedom vibro-impact system undergoing Markovian jump[J]. Nonlinear Dynamics, 2020, 101(2):823-834. [6] 朱位秋.非线性随机动力学与控制:Hamilton理论体系框架[M]. 北京: 科学出版社,2003. ZHU Weiqiu. Nonlinear stochastic dynamics and control: Hamilton theory framework[M]. Beijing: Science Press, 2003. [7] ZHU Weiqiu. Nonlinear stochastic dynamics and control in Hamiltonian formulation[J]. ASME Applied Mechanics Reviews, 2006, 59(l/2/3/4/5/6):230-248. [8] LI Chao, XU Wei, FENG Jinqian, et al. Response probability density functions of Duffing-Van der Pol vibro-impact system under correlated Gaussian white noise excitations[J]. Physica A, 2013, 392(6):1269-1279. [9] LUTES L D. Approximate technique for treating random vibration of hysteretic systems[J]. The Journal of the Acoustical Society of America, 1970, 48(1):299-306. [10] SHINOZHK M. Simulation of multivariate and multidimensional random processes[J]. The Journal of the Acoustical Society of America, 1972, 49(l):357-368. [11] WEHNER M F,WOLFER W G. Numerical evaluation of path-integral solutions to Fokker-Planck equations[J]. Physical Review A, 1983, 27(5):2663-2670. [12] NORMARK A B. Universal limit mapping in grazing bifurcations[J]. Physical Review E, 1997, 55(1):62-68. [13] WEN Guilin, XIE Jianhua, XU Daolin. Onset of degenerate Hopf bifurcation of a vibro-impact oscillator[J]. Journal of Applied Mechanics, 2004, 71(4):579-581. [14] LI Chao, XU Wei, YUE Xiaole. Stochastic response of a vibro-impact system by path integration based on generalized cell mapping method[J]. International Journal of Bifurcation and Chaos, 2014, 24(10):1450129. [15] QIAN Jiamin, CHEN Lincong. Random vibration of SDOF vibro-impact oscillators with restitution factor related to velocity under wide-band noise excitations[J]. Mechanical Systems and Signal Processing, 2021, 147:107082. [16] ZHU Haitao. Stochastic response of a vibro-impact Duffing system under external Poisson impulses[J]. Nonlinear Dynamics, 2015, 82(1/2):1001-1013. [17] NAESS A, MOE V. Efficient path integration methods for nonlinear dynamic systems[J]. Probabilistic Engineering Mechanics, 2000, 15(3):221-231. [18] WEHNER M F, WOLFER W G. Numerical evaluation of path-integral solutions to Fokker-Planck equations for the time and functionally dependent coefficients[J]. Physical Review A, 1987, 35(4):1795. [19] NAESS A, JOHNSEN J M. Response statistics of nonlinear, compliant offshore structures by the path integral solution method[J]. Probabilistic Engineering Mechanics, 1993, 8(2):91-106. [20] YU J S, CAI G Q, LIN Y K. A new path integration procedure based on Gauss-Legendre scheme[J]. International Journal of Nonlinear Mechanics, 1997, 32(4):759-768. [21] SUN J Q, HAU C S. The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation[J]. Journal of Applied Mechanics, 1990, 57(4):1018-1025. [22] PIRROTTA A, SANTORO R. Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method[J]. Probabilistic Engineering Mechanics, 2011, 26(1):26-32. [23] BUCHER C, MATTEO A D, PAOLA M D, et al. First-passage problem for nonlinear systems under Levy white noise through path integral method[J]. Nonlinear Dynamics, 2016, 85(3):1445-1456. [24] 潘鑫凯, 王小盾, 朱海涛. 简支梁非线性响应的三维路径积分法分析[J]. 计算力学学报, 2019, 36(3):395-400. PAN Xinkai, WANG Xiaodun, ZHU Haitao. Three dimensional path integration analysis nonlinear responses of simply supported beams[J]. Chinese Journal of Computational Mechanics, 2019, 36(3):395-400. [25] ZHURAVLEV V F. A method for analyzing vibration-impact system by means of special functions[J]. Mechanics of Solids, 1976, 11(2):23-27. [26] IVANOV A P. Impact oscillations: linear theory of stability and bifurcations[J]. Journal of Sound and Vibration, 1994, 178(3):361-378. [27] HUANG Dongmei, XU Wei, XIE Wenxian, et al. Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces[J]. Nonlinear Dynamics, 2015, 81(1/2):641-658. [28] DIMENTBERG M F, GAIDAI O. Random vibrations with strongly inelastic impact: response PDF by the path integration method[J]. International Journal of Nonlinear Mechanics, 2009, 44(7):791-796. [29] REN Zhicong, XU Wei. Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method[J]. Nonlinear Dynamics, 2019, 97(4):391-402. [30] REN Zhicong, XU Wei, QIAO Yan. Local averaged path integration method approach for nonlinear dynamic systems[J]. Applied Mathematics and Computation, 2019, 344:67-77. |
|