JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 76-85.doi: 10.6040/j.issn.1671-9352.0.2023.063

Previous Articles     Next Articles

Integrability and Birkhoff normal form of the dispersive Camassa-Holm equation

Xiaoping WU(),Gezi CHONG,Ziwen JIANG   

  1. School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China
  • Received:2023-02-27 Online:2023-11-20 Published:2023-11-07

Abstract:

Based on the infinitely many conserved quantites of the non-dispersive Camassa-Holm equation defined on the circle, we construct the infinitely many new ones whose quadratic parts have a consistent form for the corresponding dispersive equation. As an important application, we prove that the Birkhoff normal form of any order for the dispersive Camassa-Holm equation is action-preserving.

Key words: Camassa-Holm equation, conserved quantities, action-preserving Birkhoff normal form

CLC Number: 

  • O175.29
1 CAMASSA R , HOLM D D . An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71 (11): 1661- 1664.
doi: 10.1103/PhysRevLett.71.1661
2 CASATI P , LORENZONI P , ORTENZI G , et al. On the local and nonlocal Camassa-Holm hierarchies[J]. Journal of Mathematical Physics, 2005, 46 (4): 042704.
doi: 10.1063/1.1888568
3 FUCHSSTEINER B , FOKAS A S . Symplectic structures, their Bäcklund transformations and hereditary symmetries[J]. Physica D-Noninear Phenomina, 1981, 4 (1): 47- 66.
doi: 10.1016/0167-2789(81)90004-X
4 ALBER M S , CAMASSA R , HOLM D D , et al. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs[J]. Letters in Mathematical Physics, 1994, 32 (2): 137- 151.
doi: 10.1007/BF00739423
5 CONSTANTIN A . Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J]. Annales de l'Institut Fourier, 2000, 50 (2): 321- 362.
doi: 10.5802/aif.1757
6 CONSTANTIN A , ESCHER J . On the blow-up rate and the blow-up set of breaking waves for a shallow water equation[J]. Mathematische Zeitschrift, 2000, 233 (1): 75- 91.
doi: 10.1007/PL00004793
7 LI Y A , OLVER P J . Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J]. Journal of Differential Equations, 2000, 162 (1): 27- 63.
doi: 10.1006/jdeq.1999.3683
8 KAPPELER T , PÖSCHEL J . KAM & KdV[M]. Berlin: Springer, 2003: 118- 127.
9 DEGASPERIS A , KHOLM D D , KHON A N I . A new integrable equation with peakon solutions[J]. Theoretical and Mathematical Physics, 2002, 133 (2): 1463- 1474.
doi: 10.1023/A:1021186408422
10 CONSTANTIN A , LANNES D . The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J]. Archive for Rational Mechanics and Analysis, 2009, 192 (1): 165- 186.
doi: 10.1007/s00205-008-0128-2
11 FEOLA R , GIULIANI F , PROCESI M . Reducible KAM tori for the Degasperis-Procesi equation[J]. Communications in Mathematical Physics, 2020, 377 (3): 1681- 1759.
doi: 10.1007/s00220-020-03788-z
12 FEOLA R , GIULIANI F , PASQUALI S . On the integrability of Degasperis-Procesi equation: control of the Sobolev norms and Birkhoff resonances[J]. Journal of Differential Equations, 2019, 266 (6): 3390- 3437.
doi: 10.1016/j.jde.2018.09.003
13 PÖSCHEL J , TRUBOWITZ E . Inverse spectral theory[M]. Boston: Academic Press, 1987: 125- 139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Bao-cang,SHI Kai-quan . Reliablity characteristics of Srough sets[J]. J4, 2006, 41(5): 26 -29 .
[2] GUO Hui,LIN Chao . A least-squares mixed finite element procedure with the method of
characteristics for convection-dominated Sobolev equations
[J]. J4, 2008, 43(9): 45 -50 .
[3] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[4] QANG Yao,LIU Jian and WANG Ren-qing,* . Allee effect and its significance to small population management in nature reservation and biological invasions[J]. J4, 2007, 42(1): 76 -82 .
[5] . The necessary and sufficient condition for the existence of limit lim λ→0 Y(λI+AY)-1[J]. J4, 2009, 44(6): 10 -13 .
[6] LI Xin-hua,DONG Shou-ping,ZHAO Zhi-yong and CHEN Jun-feng, . Experiment on coherent motions in the turbulent nearwall region over a dragreducing grooved surface[J]. J4, 2006, 41(2): 106 -110 .
[7] ZHANG Li,XU Yu-ming . [J]. J4, 2006, 41(5): 30 -32 .
[8] LIU Cai-ran, SONG Xian-mei. Quadratic residue codes over Fl+vFl+v2Fl[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 45 -49 .
[9] YIN Hua-jun1,2, ZHANG Xi-yong1,2*. A new method to evaluate the exponential sums of quadratic functions on finite field with character 2[J]. J4, 2013, 48(3): 24 -30 .
[10] GENG Jian-yan,YAN Jin,LI Feng . Vertex-disjoint 4-cycle in a bipartite graph[J]. J4, 2008, 43(5): 87 -92 .