JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 76-85.doi: 10.6040/j.issn.1671-9352.0.2023.063
Previous Articles Next Articles
Xiaoping WU(),Gezi CHONG,Ziwen JIANG
CLC Number:
1 |
CAMASSA R , HOLM D D . An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71 (11): 1661- 1664.
doi: 10.1103/PhysRevLett.71.1661 |
2 |
CASATI P , LORENZONI P , ORTENZI G , et al. On the local and nonlocal Camassa-Holm hierarchies[J]. Journal of Mathematical Physics, 2005, 46 (4): 042704.
doi: 10.1063/1.1888568 |
3 |
FUCHSSTEINER B , FOKAS A S . Symplectic structures, their Bäcklund transformations and hereditary symmetries[J]. Physica D-Noninear Phenomina, 1981, 4 (1): 47- 66.
doi: 10.1016/0167-2789(81)90004-X |
4 |
ALBER M S , CAMASSA R , HOLM D D , et al. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs[J]. Letters in Mathematical Physics, 1994, 32 (2): 137- 151.
doi: 10.1007/BF00739423 |
5 |
CONSTANTIN A . Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J]. Annales de l'Institut Fourier, 2000, 50 (2): 321- 362.
doi: 10.5802/aif.1757 |
6 |
CONSTANTIN A , ESCHER J . On the blow-up rate and the blow-up set of breaking waves for a shallow water equation[J]. Mathematische Zeitschrift, 2000, 233 (1): 75- 91.
doi: 10.1007/PL00004793 |
7 |
LI Y A , OLVER P J . Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J]. Journal of Differential Equations, 2000, 162 (1): 27- 63.
doi: 10.1006/jdeq.1999.3683 |
8 | KAPPELER T , PÖSCHEL J . KAM & KdV[M]. Berlin: Springer, 2003: 118- 127. |
9 |
DEGASPERIS A , KHOLM D D , KHON A N I . A new integrable equation with peakon solutions[J]. Theoretical and Mathematical Physics, 2002, 133 (2): 1463- 1474.
doi: 10.1023/A:1021186408422 |
10 |
CONSTANTIN A , LANNES D . The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J]. Archive for Rational Mechanics and Analysis, 2009, 192 (1): 165- 186.
doi: 10.1007/s00205-008-0128-2 |
11 |
FEOLA R , GIULIANI F , PROCESI M . Reducible KAM tori for the Degasperis-Procesi equation[J]. Communications in Mathematical Physics, 2020, 377 (3): 1681- 1759.
doi: 10.1007/s00220-020-03788-z |
12 |
FEOLA R , GIULIANI F , PASQUALI S . On the integrability of Degasperis-Procesi equation: control of the Sobolev norms and Birkhoff resonances[J]. Journal of Differential Equations, 2019, 266 (6): 3390- 3437.
doi: 10.1016/j.jde.2018.09.003 |
13 | PÖSCHEL J , TRUBOWITZ E . Inverse spectral theory[M]. Boston: Academic Press, 1987: 125- 139. |
[1] | YU Ye, WANG Hai-quan. Asymptotic behavior for a class of higher-order Camassa-Holm equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 89-94. |
[2] | ZONG Xi-ju, WANG Zhong-hua. Large time behavior for a simplified 1d viscous Camassa-Holm equation model of fluid-solid interaction [J]. J4, 2011, 46(2): 34-38. |
[3] | DONG Wen-shan . Lie symmetries and conserved quantities of holonomic non-conservative dynamical systems in generalizad classical machanics [J]. J4, 2007, 42(9): 30-35 . |