JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (2): 44-50.doi: 10.6040/j.issn.1671-9352.0.2021.725

Previous Articles    

Maschke theorem for the Grothendieck algebra of dihedral group

CAO Liu-feng   

  1. School of Mathematics, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2023-02-12

Abstract: Let F be an algebraically closed field with characteristic 0, and n=2N+1 be any odd number, we calculating the Casimir number of the Grothendieck ring r(FDn) of the dihedral group Dn equals 2n2 explicitly. Furthermore, we give the Maschke theorem for the corresponding Grothendieck algebra of dihedral group.

Key words: dihedral group, Grothendieck ring, Casimir number, Jacobson radical

CLC Number: 

  • O153.3
[1] ETINGOF P, NIKSHYCH D, OSTRIK V. On fusion categories[J]. Annals of Mathematics, 2005, 162(2):581-642.
[2] OSTRIK V. Fusion categories of rank 2[J]. Mathematical Research Letters, 2002, 10(2):177-184.
[3] NAIDU D, ROWELL E C. A finiteness property for braided fusion categories[J]. Algebras and Representation Theory, 2011, 14(5):837-855.
[4] NATALE S. On the classification of fusion categories[C] //Proceedings of the International Congress of Mathematicians(ICM 2018). [S.l.] : World Scientific, 2019, 1:173-200.
[5] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor categories[M] //Mathematical Surveys and Monographs, 205. [S.l.] : AMS, 2015.
[6] YUAN C T, ZHAO R J, LI L B. Irreducible Z+-modules of near-group fusion ring K(Z3, 3)[J]. Front Math China, 2018, 13(4):947-966.
[7] 王志华,李立斌. Verlinde模性范畴上的Casimir数及其应用[J].数学学报(中文版), 2018, 61(1):59-66. WANG Zhihua, LI Libin. The Casimir number of a Verlinde modular category and its applications[J]. Acta Math Sin(Chin Series), 2018, 61(1):59-66.
[8] WANG Z H, LIU G X, LI L B. The Casimir number and the determinant of a fusion category[J]. Glasgow Math J, 2020, 63(2):1-13.
[9] WANG Z H, LI L B, ZHANG Y H. A criterion for the Jacobson semisimplicity of the Green ring of a finite tensor category[J]. Glasgow Math J, 2018, 60(1):253-272.
[10] 曹刘峰,周芯雨,李立斌. CMS融合代数的不可约表示[J]. 数学的实践与认识, 2020, 50(24):189-195. CAO Liufeng, ZHOU Xinyu, LI Libin. The irreducible representations of CMS fusion ring[J]. Mathematics in Practice and Theory, 2020, 50(24):189-195.
[11] HIGMAN D. On orders in separable algebras[J]. Canad J Math, 1955, 7:509-515.
[12] 唐帅.二面体群的Grothendieck环结构[J]. 数学学报(中文版), 2020, 63(3):245-252. TANG Shuai. The structure of the Grothendieck ring of dihedral group[J]. Acta Math Sin(Chin Series), 2020, 63(3):245-252.
[13] LIDL R, MULLEN G L, TURNWALD G. Dickson polynomials[M]. Harlow: Longman Scientific & Technical, 1993.
[1] MA Guang-lin, WANG Yao, REN Yan-li. Some properties of JQ rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 32-38.
[2] XIE Wei, GUO Ji-dong. Number of homomorphisms between central-dihedral group and dihedral group [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 80-86.
[3] LAI Ji-na, GUO Ji-dong. Number of homomorphisms from a class of non-abelian groups into dihedral groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 30-36.
[4] LI Hong-xia, GUO Ji-dong, HAI Jin-ke. The number of homomorphisms from dihedral groups to a class of metacyclic groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 34-40.
[5] WANG Yao1, JIANG Mei-mei1, REN Yan-li2*. Some properties of skew polynomial rings#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!