JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 111-117.doi: 10.6040/j.issn.1671-9352.0.2022.538

Previous Articles     Next Articles

Transition behavior of underdamped periodic potential system driven by Gaussian noise and Lévy noise

Jiaxin DING(),Yongfeng GUO*(),Lina MI   

  1. School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
  • Received:2022-10-19 Online:2023-08-20 Published:2023-07-28
  • Contact: Yongfeng GUO E-mail:JXDing2333@163.com;guoyongfeng@mail.nwpu.edu.cn

Abstract:

In the study of an underdamped periodic potential system, multiplicative Gaussian white noise and additive Lévy noise are introduced simultaneously. First, the second-order underdamped periodic potential system is equivalent to two first-order stochastic differential equations. Then, Lévy noise is generated by Janicki-Weron algorithm, the steady-state probability density function of the equation is simulated by the numerical simulation, and the dynamic characteristics of the underdamped periodic potential system are analyzed. It is found that system parameter, friction coefficient, stability index, skew parameter, multiplicative noise intensity and additive Lévy noise intensity can induce phase transition. In addition, it can be observed that the increase of system parameter and the friction coefficient is conducive to the stable state of particles.

Key words: underdamped periodic potential system, noises, steady-state probability density function, transition behavior

CLC Number: 

  • O211.6

Fig.1

Image of the potential function of a periodic potential system"

Fig.2

Time series diagram of numerical solution of system (1) (V0=0.8, γ=0.4, α=1.5, β=0.8, D=0.1, Q=0.1)"

Fig.3

Curves of SPD function with different system parameters (γ=0.4, α=1.5, β=0.8, D=0.1, Q=0.1)"

Fig.4

Curres of SPD function with different friction coefficients (V0=0.8, α=1.5, β=0.8, D=0.1, Q=0.1)"

Fig.5

Curves of SPD function with different stability indexes(V0=0.8, γ=0.4, β=0.8, D=0.1, Q=0.1)"

Fig.6

Curves of SPD function with different skew parameters(V0=0.8, γ=0.4, α=1.5, D=0.1, Q=0.1)"

Fig.7

Curves of SPD function with different multiplicative noise intensities(V0=0.8, γ=0.4, α=1.5, β=0.8, Q=0.1)"

Fig.8

Curves of SPD function with different additive noise intensities(V0=0.8, γ=0.4, α=1.5, β=0.8, D=0.1)"

1 FRONZONI L , MANNELLA R . Stochastic resonance in periodic potentials[J]. Journal of Statistical Physics, 1993, 70 (1): 501- 512.
2 KANG Yanmei . Coherence resonance in subdiffusive fractional Klein-Kramers periodic potential systems without a bifurcation precursor[J]. EPL, 2011, 94 (6): 60005.
doi: 10.1209/0295-5075/94/60005
3 许鹏飞, 公徐路, 李毅伟, 等. 含记忆阻尼函数的周期势系统随机共振[J]. 物理学报, 2022, 71 (8): 32- 42.
XU Pengfei , GONG Xulu , LI Yiwei , et al. Stochastic resonance of periodic potential systems containing memory damping functions[J]. Acta Physica Sinica, 2022, 71 (8): 32- 42.
4 GUO Yongfeng , LOU Xiaojuan , DONG Qiang , et al. Dynamic behavior of periodic potential system driven by cross-correlated non-Gaussian noise and Gaussian white noise[J]. International Journal of Robust and Nonlinear Control, 2022, 32 (1): 126- 140.
doi: 10.1002/rnc.5805
5 CHAKRABORTY A . Nonadiabatic tunnelling in an ideal one-dimensional semi-infinite periodic potential system: an analytically solvable model[J]. Molecular Physics, 2011, 109 (3): 429- 434.
doi: 10.1080/00268976.2010.527303
6 QI Qianqian , ZHOU Bingchang . Stochastic resonance in an underdamped periodic potential system with symmetric trichotomous noise[J]. Indian Journal of Physics, 2020, 94 (1): 81- 86.
doi: 10.1007/s12648-019-01421-x
7 LOU Xiaojuan , GUO Yongfeng , DONG Qiang , et al. First-passage behavior of periodic potential system driven by correlated noise[J]. Chinese Journal of Physics, 2020, 68, 270- 283.
doi: 10.1016/j.cjph.2020.09.022
8 GUO Yongfeng , LOU Xiaojuan , DONG Qiang , et al. Stochastic resonance in a periodic potential system driven by cross-correlated noises and periodic signal[J]. International Journal of Modern Physics B, 2019, 33 (28): 1950338.
doi: 10.1142/S0217979219503387
9 NING Lijuan , WANG Jie . Current transport for a spatially periodic potential system with color noises[J]. International Journal of Modern Physics B, 2018, 32 (31): 1850352.
doi: 10.1142/S0217979218503526
10 焦尚彬, 孙迪, 刘丁, 等. α稳定噪声下一类周期势系统的振动共振[J]. 物理学报, 2017, 66 (10): 26- 36.
JIAO Shangbin , SUN Di , LIU Ding , et al. Vibrational resonance of a class of periodic potential systems under α-stable noise[J]. Acta Physica Sinica, 2017, 66 (10): 26- 36.
11 HU Gang . Stochastic resonance in a periodic potential system under a constant force[J]. Physics Letters A, 1993, 174 (3): 247- 249.
doi: 10.1016/0375-9601(93)90767-T
12 刘开贺, 靳艳飞, 马正木. 相关乘性和加性高斯白噪声激励下周期势系统的随机共振[J]. 动力学与控制学报, 2016, 14 (1): 59- 63.
LIU Kaihe , JIN Yanfei , MA Zhengmu . Stochastic resonance of periodic potential systems under correlated multiplicative and additive Gaussian white noise excitation[J]. Journal of Dynamics and Control, 2016, 14 (1): 59- 63.
13 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振[J]. 物理学报, 2015, 64 (24): 84- 90.
MA Zhengmu , JIN Yanfei . Stochastic resonance of underdamped periodic potential systems under binary noise excitation[J]. Acta Physica Sinica, 2015, 64 (24): 84- 90.
14 SAIKIA S . The role of damping on stochastic resonance in a periodic potential[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 416, 411- 420.
doi: 10.1016/j.physa.2014.08.060
15 REEBOHN W L , POHLONG S S , MAHATO M C . Periodically driven underdamped periodic and washboard potential systems: dynamical states and stochastic resonance[J]. Physical Review E, 2012, 85 (3): 031144.
doi: 10.1103/PhysRevE.85.031144
16 KHARKONGOR D , REEBOHN W L , MAHATO M C . Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system[J]. Physical Review E, 2016, 94 (2): 022148.
doi: 10.1103/PhysRevE.94.022148
17 JANICKI A , WERON A . Simulation and chaotic behavior of α-stable stochastic processes[M]. New York: Marcel Dekker, 1994: 351- 352.
18 WERON A , WERON R . Computer simulation of Lévy α-stable variables and processes[M]. Karpacz, Poland: Springer, 1995: 379- 392.
19 WERON R . On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J]. Statistics & Probability Letters, 1996, 28 (2): 165- 171.
20 DYBIEC B , GUDOWSKA N E . Stochastic resonance: the role of α-stable noises[J]. Acta Physica Polonica B, 2006, 37 (5): 1479- 1490.
21 DYBIEC B , GUDOWSKA N E , HANGGI P . Lévy-Brownian motion on finite intervals: mean first passage time analysis[J]. Physical Review E, 2006, 73 (4): 046104.
doi: 10.1103/PhysRevE.73.046104
22 XU Wei , HAO Mengli , GU Xudong , et al. Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment[J]. Modern Physics Letters B, 2014, 28 (11): 1450085.
23 HAO Mengli , XU Wei , GU Xudong , et al. Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model[J]. Chinese Physics B, 2014, 23 (9): 090501.
24 XU Yong , LI Yongge , LI Juanjuan , et al. The phase transition in a bistable duffing system driven by Lévy noise[J]. Journal of Statistical Physics, 2015, 158 (1): 120- 131.
25 顾仁财, 许勇, 张慧清. 非高斯Lévy噪声驱动下的非对称双稳系统的相转移和平均首次穿越时间[J]. 物理学报, 2011, 60 (11): 110514.
GU Rencai , XU Yong , ZHANG Huiqing . Phase transfer and mean first crossing time of asymmetric bistable systems driven by non-Gaussian Lévy noise[J]. Acta Physica Sinica, 2011, 60 (11): 110514.
26 张广丽, 吕希路, 康艳梅. α稳定噪声环境下过阻尼系统中的参数诱导随机共振现象[J]. 物理学报, 2012, 61 (4): 040501.
ZHANG Guangli , LU Xilu , KANG Yanmei . Parameter-induced stochastic resonance phenomena in overdamped systems in α-stable noise environment[J]. Acta Physica Sinica, 2012, 61 (4): 040501.
27 CHEN Can , KANG Yanmei . Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 379- 395.
28 郭永峰, 王琳杰, 魏芳. Lévy噪声和高斯白噪声共同激励的FHN神经元系统的动力学特性[J]. 应用力学学报, 2019, 36 (4): 806- 811.
GUO Yongfeng , WANG Linjie , WEI Fang . Dynamical properties of FHN neuron system jointly excited by Lévy noise and Gaussian white noise[J]. Chinese Journal of Applied Mechanics, 2019, 36 (4): 806- 811.
29 LI Y G , XU Y , KURTHS J , et al. Levy-noise-induced transport in a rough triple-well potential[J]. Physical Review E, 2016, 94 (4): 042222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[2] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[3] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[4] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[5] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[6] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[9] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[10] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .