JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 57-62.doi: 10.6040/j.issn.1671-9352.0.2022.328

Previous Articles     Next Articles

The p-edge neighbor scattering number of graphs

Yuyuan SU(),Zongtian WEI,Yan WANG   

  1. Department of Mathematics, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • Received:2022-06-04 Online:2023-08-20 Published:2023-07-28

Abstract:

In order to measure the network invulnerability more precisely, the concept of edge neighbor scattering number with edge failure probability p is combined, the concept of p-edge neighbor scattering number is proposed. The parameter calculation formulas of some basic graphs and the algorithm of p-edge neighbor scattering number of the star tree are given. The relationship between p-edge neighbor scattering number and the edge number of graphs and edge failure probability p is analyzed.

Key words: graph, edge neighbor scattering number, edge failure probability, p-edge neighbor scattering number, invulnerability

CLC Number: 

  • O157.5

Fig.1

Double star DS(m, n) of order m+n+2"

Fig.2

Comet Cn, k"

Fig.3

Generalized Petersen graph P(n, 1)"

Fig.4

Cycle star S1, C3, C4, C5, C6"

Fig.5

Star tree S1, 4, 3, 3"

Table 1

The p-edge neighbor scattering number of Pn+e"

d(u, v) ENSp(Pn+e)
2≤d(u, v)≤n-4 $ \begin{cases}1, & d(u)=1 \text { 或 } d(v)=1 ; \\ \max \left\{4 p-2 p^2, 1\right\}, & d(u) \neq 1 \text { 且 } d(v) \neq 1 \text { 。 }\end{cases}$
d(u, v)=n-3 $\begin{cases}1, & d(u)=1 \text { 或 } d(v)=1 ; \\ 4 p-2 p^2, & d(u) \neq 1 \text { 且 } d(v) \neq 1 \text { 。 }\end{cases}$
d(u, v)=n-2 2p-p2
d(u, v)=n-1 ENSp(Cn)

Table 2

Relationship between p-edge neighbor scattering number and edge failure probability p of several graphs"

Pn Cn S1, n-1 DS(m, n) Cn, k
ENSp 1 0 (n-2)p-pn-2 1+(m+n)p-pn-pm 1+kp-pk
$ \frac{\mathrm{d}}{\mathrm{d} p}\left(\mathrm{ENS}_p\right)$ 0 0 n-2-(n-2)pn-3 m+n-npn-1-mpm-1 k-kpk-1
ENS 1 0 n-3 m+n-1 k
1 BONDY J A , MURTY U S R . Graph theory[M]. New York: Springer, 2008.
2 COZZENS M , WU S S Y . Edge-neighbor-integrity of trees[J]. Australasian Journal of Combinatorics, 1996, 10, 163- 174.
3 ZHANG S , WANG Z . Scattering number in graphs[J]. Networks, 2001, 37 (2): 102- 106.
doi: 10.1002/1097-0037(200103)37:2<102::AID-NET5>3.0.CO;2-S
4 WEI Z , LI Y , ZHANG J . Edge-neighbor-scattering number of graphs[J]. ARS Combinatoria, 2007, 85 (10): 417- 426.
5 贺丹. 图的距离边标号及其相关问题[D]. 南京: 东南大学, 2015.
HE Dan. On edge-labeling with distance of graphs and some related problems[D]. Nanjing: Southeast University, 2015.
6 魏宗田, 刘勇, 杨威, 等. 网络抗毁性[M]. 西安: 西安交通大学出版社, 2015.
WEI Zongtian , LIU Yong , YANG Wei , et al. Network invulnerability[M]. Xi'an: Xi'an Jiaotong University Press, 2015.
7 杨玉成. 图的边邻域坚韧度研究[D]. 西安: 西安建筑科技大学, 2019.
YANG Yucheng. A study of edge neighbor toughness of graphs[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.
8 杨雪. 图的广义p-邻域抗毁性参数研究[D]. 西安: 西安建筑科技大学, 2021.
YANG Xue. A study of the general p-neighbor invulnerability parameters of graphs[D]. Xi'an: Xi'an University of Architecture and Technology, 2021.
[1] NA Yujia, XIE Jun, YANG Haiyang, XU Xinying. Context fusion-based knowledge graph completion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 71-80.
[2] ZHU Lina, LI Jingwen, SUN Shuai. L(2,1)- edge coloring algorithm for several kinds of composite graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 63-72.
[3] Le CHANG,Zongtian WEI. Graph N[S]-T reconstruction based on neighbor connectivity optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 40-45, 76.
[4] Huiling YIN,Jingrong CHEN,Xiaoyan SU. The k-path vertex cover in some products graphs of star graph and bipartite graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 18-24, 39.
[5] HAN Hui, LIU Yutong, YAO Haiyuan. Recursive solving of di-forcing polynomials for ladder graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 127-134.
[6] WANG Ligong, YU Zhiming, ZHOU Feng, TAO Lijie, XING Luqi. Two kinds of integral graphs based on complete graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 155-159.
[7] WANG Ranran, WEN Fei, ZHANG Shucheng. On the generalized characteristic polynomial of a family of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 165-174.
[8] LAN Linyu, LI Jingwen, ZHANG Shucheng, ZHANG Lijing, SHEN Huayu. Vertex reducibletotal labeling algorithm for graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 135-146.
[9] LI Xin-yu, FAN Hui, LIU Jing-lei. Robust clustering based on adaptive graph regularization and low-rank matrix decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 21-38.
[10] LI Ning, GU Hai-bo, MA Li-na. Existence of solutions for boundary value problems of a class of nonlinear Caputo type sequential fractional differential equations on star graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 22-34.
[11] YANG Teng-fei, XU Chang-qing. Total colorings of 3-degenerate graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 61-63.
[12] WU Chuan-shu, ZHAO Hai-xing, DENG Bo. Degree-based graph entropy on graph operations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 44-53.
[13] JIN Ming, CHEN Jin-kun. Optimal scale reduction based on graph theory in consistent multi-scale decision tables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 74-83.
[14] WENG Ting-ting, WEI Zong-tian. Weighted neighbor toughness of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 36-43.
[15] DENG Zi-Jian, LIU Bin, HUO Bo-feng. Connectivity and Hamiltonian properties of second order circuit graphs of a class of uniform matroid [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[5] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[6] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[7] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[10] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .