JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 92-103.doi: 10.6040/j.issn.1671-9352.0.2022.539

Previous Articles     Next Articles

Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay

Yadi WANG(),Hailong YUAN*()   

  1. School of Mathematics & Data Science, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
  • Received:2022-10-19 Online:2023-08-20 Published:2023-07-28
  • Contact: Hailong YUAN E-mail:842219671@qq.com;yuanhailong@sust.edu.cn

Abstract:

The Lengyel-Epstein reaction diffusion system with time delay subject to Neumann boundary conditions is considered. By choosing the time delay as the bifurcation parameter, the stability/instability of the unique positive constant equilibrium and the existence of Hopf bifurcation are investigated. In addition, the formulae to determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions by applying the normal form theory and center manifold theorem for partial differential equation are derived. Finally, some numerical simulations are carried out to support the analytical results.

Key words: Hopf bifurcation, time delay, Lengyel-Epstein system, stability, numerical simulations

CLC Number: 

  • O175.12

Fig.1

Parameter is τ=0.030 5 and the initial value is (u0, v0)=(1, 1)"

Fig.2

Parameter is τ=0.033 4 and the initial value is (u0, v0)=(2.36, 6.07)"

Fig.3

Parameter is τ=0.030 4 and the initial value is u(x, t)=α+0.01 cos(2.5x), v(x, t)=vα+0.01 cos(2.5x)"

Fig.4

Parameter is τ=0.038 5 and the initial value is u(x, t)=α+0.45t cos(0.05x), v(x, t)=vα+0.45t cos (0.05x)"

Fig.5

Parameter is τ=0.038 5 and the initial value is u(x, t)=α+1.65 cos(4.21x), v(x, t)=vα+1.65 cos (4.21x)"

1 LENGYEL I , EPSTEIN I R . Modeling of turing structure in the chlorite-iodide-malonic-acid-starch reaction system[J]. Science, 1991, 251 (4994): 650- 652.
doi: 10.1126/science.251.4994.650
2 LENGYEL I , EPSTEIN I R . A chemical approach to designing turing-patterns in reaction-diffusion system[J]. Proceedings of the National Academy of Sciences, 1992, 89 (9): 3977- 3979.
doi: 10.1073/pnas.89.9.3977
3 JANG J , NI W M , TANG M X . Global bifurcation and structure of Turing patterns in 1-D Lengyel-Epstein model[J]. Journal of Dynamics & Differential Equations, 2005, 16 (2): 297- 320.
4 NI Weiming , TANG Moxun . Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Transactions of the American Mathematical Society, 2005, 357 (10): 3953- 3969.
doi: 10.1090/S0002-9947-05-04010-9
5 DU Linglong , WANG Mingxin . Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model[J]. Journal of Mathematical Analysis & Applications, 2010, 366 (2): 473- 485.
6 YI Fengqi , WEI Junjie , SHI Junping . Diffusion-driven instability and bifurcation in the Lengyel-Epstein system[J]. Nonlinear Analysis: Real World Applications, 2008, 9 (3): 1038- 1051.
doi: 10.1016/j.nonrwa.2007.02.005
7 YI Fengqi , WEI Junjie , SHI Junping . Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system[J]. Applied Mathematics Letters, 2009, 22 (1): 52- 55.
doi: 10.1016/j.aml.2008.02.003
8 JIN Jiayin , SHI Junping , WEI Junjie , et al. Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions[J]. Rocky Mountain Journal of Mathematics, 2013, 43 (5): 1637- 1674.
9 DONG Yaying , ZHANG Shunli , LI Shanbing . Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model[J]. Advances in Difference Equations, 2016, 2016 (1): 1- 15.
doi: 10.1186/s13662-015-0739-5
10 CELIK C , MERDAN H . Hopf bifurcation analysis of a system of coupled delayed-differential equations[J]. Applied Mathematics & Computation, 2013, 219 (12): 6605- 6617.
11 MERDAN H , KAYAN S . Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay[J]. Nonlinear Dynamics, 2015, 79 (3): 1757- 1770.
doi: 10.1007/s11071-014-1772-8
12 MERDAN H , KAYAN S . Delay effects on the dynamics of the Lengyel-Epstein reaction-diffusion model[M]. Cham, Switzerland: Springer International Publishing, 2016.
13 LIU Qingsong, LIN Yiping, CAO Jingnan, et al. Chaos and Hopf bifurcation analysis of the delayed local Lengyel-Epstein system[J/OL]. Discrete Dynamics in Nature & Society, 2014[2022-10-08]. http://dx.doi.org/10.1155/2014/139375.
14 ZHANG Cunhua , HE Ye . Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system[J]. Applied Mathematics & Computation, 2020, 378, 1- 22.
15 LIN X D , SO W H J , WU J H . Center manifolds for partial differential equations with delays[J]. Proceedings of the Royal Society of Edinburgh, 1992, 122 (34): 237- 254.
16 HASSARD B D , KAZARINOFF N D , WAN Y H . Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981.
[1] Zipeng HE,Yaying DONG. Steady-state solutions of a Holling type Ⅱ competition model in heterogeneous environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 73-81.
[2] Yun NI,Xiping LIU. Existence and Ulam stability for positive solutions of conformable fractional coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 82-91.
[3] HU Yuwen, XU Jiucheng, ZHANG Qianqian. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59.
[4] LIU Yun, ZHU Pengjun, CHEN Luyao, SONG Kai. Optimization of blockchain sharding by profit incentive algorithm based on edge computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 88-96.
[5] XU Yue, HAN Xiaoling. Impact of media effects with dual delays on control of echinococcosis in Tibet [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 53-62.
[6] HUANG Yu, GAO Guang-hua. Compact difference schemes for the fourth-order parabolic equations with the third Dirichlet boundary [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 16-28.
[7] GUO Gaihui, WANG Jingjing, LI Wangrui. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42.
[8] LI Yonghua, ZHANG Cunhua. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126.
[9] CHEN Gang, ZHANG Rui. Dynamics of a two-strain co-infection epidemic model with vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 84-96.
[10] LI Lei, YE Yongsheng. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74.
[11] CAO Qian, LI Yanling, SHAN Weihua. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53.
[12] LIU Wenyan, QIAO Shuai, GAO Chenghua. Global dynamics analysis of a class of Filippov-type HR neuron model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 13-23.
[13] LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15.
[14] HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24.
[15] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[2] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[3] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[4] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[5] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[6] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[7] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[10] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .