JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (1): 35-45.doi: 10.6040/j.issn.1671-9352.4.2022.606

Previous Articles     Next Articles

Multi-instance embedding learning with instance affinity mining and reinforcement

Mei YANG1,3,4(),Wen DENG1,Benwen ZHANG2,Fan MIN1,3,4,*()   

  1. 1. School of Computer Science, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2. School of Polytechnic, Sichuan Minzu College, Kangding 626001, Sichuan, China
    3. Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    4. Lab of Machin Learning, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2022-08-02 Online:2024-01-20 Published:2024-01-19
  • Contact: Fan MIN E-mail:yangmei@swpu.edu.cn;minfan@swpu.edu.cn

Abstract:

We propose the multi-instance embedding learning with instance affinity mining and reinforcement(MEMR) algorithm, including three techniques. The affinity mining technique is based on a custom affinity metric. First, the initial negative representative instance set(INRI) is selected in the negative instance space. Then, the initial positive representative instance set(IPRI) is chosen according to the difference between positive and negative instances. The affinity reinforcement technique evaluates the positive(negative) affinity between IPRI(INRI) and the entire instance space to obtain a representative instance set with stronger overall affinity. The bag embedding technique converts bags into single vectors for learning through the designed embedding function. Experiments are carried out across four application domains and seven comparison algorithms. The results show that MEMR generally outperforms other comparison algorithms in accuracy, especially in image retrieval and web recommendation datasets.

Key words: affinity mining, affinity reinforcement, embedding method, instance selection, multi-instance learning

CLC Number: 

  • O213

Fig.1

Main flow of the MEMR algorithm"

Table 1

Notation description"

符号 含义 符号 含义
$\mathscr{X}$ 实例空间 Vi Bi的嵌入向量
$\mathscr{T}$ 数据集 N $\mathscr{T}$中包的个数
Y 标签向量 ni Bi中实例的个数
Bi i个包 d 实例的维度
xij Bi的第j个实例 m 正包的个数
yi Bi的标签 ψ C中代表实例的个数
C 代表实例集

Fig.2

Bag embedding technique"

Table 2

Detailed properties of the used datasets"

数据集 包数量 实例数 维度
正包 负包
Elephant 100 100 200 1 391 230
Fox 100 100 200 1 320 230
Tiger 100 100 200 1 220 230
Messidor 654 546 1 200 12 352 687
Ucsb_breast 26 32 58 2 002 708
Newsgroups 993 1 007 2 000 80 137 200
Web 490 527 1 017 30 807 6 211

Fig.3

Parameter analysis of the number of representative instances of MEMR"

Fig.4

Ablationexperiment of MEMR and MEM(%)"

Table 3

Average accuracy on image retrieval and medical image datasets"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
Elephant 82.5±0.84 81.5±1.22 86.0±1.76 84.7±0.98 76.5±1.64 63.2±2.58 75.4±1.99 87.1±1.28
Fox 61.9±0.86 60.8±2.60 61.2±0.75 63.3±1.75 54.2±3.47 59.7±4.33 58.8±2.66 64.6±0.86
Tiger 81.1±1.16 76.3±1.29 79.1±0.58 84.9±7.63 69.0±1.41 65.7±2.06 67.4±2.73 85.1±0.37
Messidor 61.8±0.84 62.1±0.53 70.5±0.53 67.5±0.28 64.0±0.24 62.2±0.47 56.8±1.53 69.3±0.30
Ucsb_breast 81.2±2.71 55.6±2.33 85.6±0.80 80.0±1.79 56.0±2.19 54.4±0.20 63.0±7.62 82.8±4.12

Table 4

Average accuracy on text categorization datasets"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MI ELDB MEMR
News.aa 83.6±0.80 52.6±7.86 83.8±1.60 84.0±2.28 54.6±7.06 52.6±4.03 84.6±1.78 86.0±2.28
News.cg 78.0±0.63 54.6±1.20 80.2±0.98 79.6±0.80 53.2±5.31 50.2±5.11 79.5±2.42 80.8±1.33
News.co 57.4±3.56 49.6±2.24 72.2±1.33 69.2±1.60 52.2±4.31 47.4±4.03 63.1±3.07 71.6±2.06
News.csi 75.4±0.80 57.6±3.20 79.8±1.17 80.0±1.55 56.6±6.62 50.2±5.49 78.1±2.02 81.2±2.40
News.csm 77.8±0.75 52.8±6.79 77.2±0.75 78.0±1.10 43.4±3.38 51.0±5.02 76.4±3.89 80.6±0.80
News.cw 71.0±3.16 57.8±2.79 86.6±0.80 82.6±1.02 56.8±4.31 54.2±4.49 79.6±1.43 81.0±1.10
News.mf 58.8±0.98 51.2±2.32 71.0±1.26 72.2±1.94 46.8±2.71 52.6±6.65 64.4±2.37 74.0±2.68
News.ra 75.4±0.49 52.4±1.62 78.4±1.36 81.6±1.02 51.8±6.68 52.0±5.02 71.5±2.27 82.4±1.74
News.rm 77.2±2.56 54.8±3.25 85.6±2.58 82.8±0.75 57.0±5.10 54.0±1.90 81.7±1.83 83.2±1.17
News.rsb 74.6±1.02 54.6±3.44 84.8±0.40 83.2±0.75 48.2±3.43 54.2±3.06 79.2±3.33 83.6±1.36
News.rsh 80.8±0.98 50.4±0.49 87.8±1.33 89.6±1.02 47.4±5.85 51.0±4.77 77.2±3.19 90.0±1.55
News.sc 73.8±0.40 58.6±1.85 75.2±1.60 83.0±1.10 49.4±3.83 50.2±4.53 70.0±2.87 82.8±1.60
News.se 92.0±0.00 53.0±0.00 92.6±0.80 92.4±0.49 55.6±1.96 51.0±3.58 88.2±1.32 92.4±1.36
News.sm 72.4±1.36 57.2±0.75 83.2±1.72 81.0±1.10 52.6±4.96 51.0±7.16 80.9±2.81 83.6±1.36
News.sr 77.4±0.80 50.2±1.17 79.8±2.56 79.8±2.32 51.4±2.80 57.6±2.65 80.7±1.16 80.6±1.62
News.ss 82.2±0.40 54.2±1.72 87.2±1.17 85.6±1.20 50.2±2.79 50.0±1.41 78.8±1.75 88.6±1.20
News.tpg 77.2±1.17 52.6±1.36 77.8±1.17 81.8±0.75 44.0±4.77 51.0±2.61 75.4±2.91 81.0±1.67
News.tpmd 83.0±1.79 60.0±3.58 79.0±0.63 83.6±1.02 55.6±2.94 55.6±4.59 76.7±2.26 85.2±1.17
News.tpmc 66.2±3.82 62.4±1.02 75.8±1.47 76.0±1.67 53.6±4.03 56.8±2.99 65.5±1.78 77.2±0.75
News.trm 61.6±1.02 52.6±1.02 75.0±1.10 78.0±2.28 47.2±3.87 51.0±3.63 66.4±2.27 76.2±1.47

Table 5

Average accuracy on Web recommendation datasets"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MI ELDB MEMR
Web1 80.7±2.53 81.6±0.86 83.4±1.06 79.6±1.09 83.6±1.15 83.0±1.23 81.1±1.72 84.0±1.36
Web2 82.3±2.34 81.0±0.36 83.0±0.93 80.0±1.00 82.7±0.81 82.7±1.00 74.2±2.31 81.4±1.56
Web3 80.7±2.90 81.9±1.68 82.1±0.93 81.2±1.87 81.6±0.73 81.4±1.23 79.0±1.99 82.0±1.45
Web4 80.9±1.00 79.8±2.26 80.3±1.09 83.8±0.36 78.7±1.36 77.6±0.45 79.1±2.59 85.6±1.56
Web5 78.1±1.52 77.8±2.41 78.1±1.15 82.5±0.89 79.0±1.41 78.1±0.61 74.1±2.82 83.2±1.09
Web6 79.8±2.90 82.0±1.34 77.8±0.45 84.9±0.93 82.7±1.52 76.5±0.68 79.7±1.77 86.7±1.87
Web7 64.1±0.73 60.0±1.99 68.0±2.02 72.9±2.18 61.8±4.53 61.0±3.06 52.6±3.49 74.5±1.41
Web8 64.7±1.45 61.6±2.66 71.2±1.59 76.3±2.70 56.1±2.02 59.0±3.19 48.0±3.16 78.9±2.10
Web9 68.0±2.53 57.4±3.01 74.0±4.05 77.2±1.15 56.7±2.34 54.9±3.73 46.5±2.93 81.2±2.97

Table 6

Mean rank of eight algorithms on four classes of datasets"

Datasets Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
图像检索 3.33 5.00 3.33 2.33 6.67 7.33 7.00 1.00
医学图像 5.00 6.50 1.00 3.50 5.00 6.50 6.50 2.00
文本分类 4.45 6.45 2.55 2.25 7.25 7.30 4.20 1.55
网页推荐 4.89 5.11 3.33 3.67 4.33 5.78 7.33 1.56
平均排名 4.50 5.97 2.74 2.71 6.29 6.85 5.41 1.53

Fig.5

Bonferroni-Dunn Test of MEMR and 7 algorithms"

Table 7

The CPU runtime (s) of one time 10CV of the eight algorithms on the five datasets s"

Datasets(d/n/N) Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
Time Complexity O(dN) O(dn2) O(dn) O(dn) O(dn2) O(dn2) O(dn2) O(dn)
Elephant (230/1 320/200) 0.141 39.974 5.561 1.062 34.179 16.962 24.854 5.234
Ucsb_breast (708/2 002/58) 0.125 83.145 8.576 1.390 65.969 152.230 63.860 4.624
News.aa (200/5 443/100) 0.078 446.780 5.717 1.250 382.254 66.806 349.120 3.905
News.sm (200/3 094/100) 0.063 130.253 5.030 1.094 121.533 40.662 114.382 3.406
Web4 (6 059/3 423/113) 1.109 533.881 711.693 9.748 453.940 1 169.954 785.484 44.241
Mean rank 1.00 7.40 4.00 2.00 6.40 6.20 6.00 3.00
1 DIETTERICH T G , LATHROP R H , LOZANO-PEREZ T . Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89 (1/2): 31- 71.
2 LI Daxiang , ZHANG Yue . Multi-instance learning algorithm based on LSTM for Chinese painting image classification[J]. IEEE Access, 2020, 8, 179336- 179345.
doi: 10.1109/ACCESS.2020.3027982
3 SHARMA Y, SHRIVASTAVA A, EHSAN L, et al. Cluster-to-conquer: a framework for end-to-end multi-instance learning for whole slide image classification[C]//Medical Imaging with Deep Learning. Lübeck: PMLR, 2021: 682-698.
4 王刚, 许信顺. 一种新的基于多示例学习的场景分类方法[J]. 山东大学学报(理学版), 2010, 45 (7): 108- 113.
WANG Gang , XU Xinshun . A new multi-instance learning method for scene classification[J]. Journal of Shandong University (Natural Science), 2010, 45 (7): 108- 113.
5 YI Lin , ZHANG Honggang . Regularized instance embedding for deep multi-instance learning[J]. Applied Sciences, 2020, 10 (1): 64- 78.
6 KUMAR V, CHEMMENGATH S, GUPTA Y, et al. Multi-instance training for question answering across table and linked text[J/OL]. arXiv, 2021. https://arxiv.org/abs/2112.07337.
7 YANG Mei, ZENG Wenxi, MIN Fan. Multi-instance embedding learning through high-level instance selection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Chengdu: Springer, 2022: 122-133.
8 TIAN Yuchi , WANG Jiawei , YANG Wenjie , et al. Deep multi-instance transfer learning for pneumothorax classification in Chest X-Ray images[J]. Medical Physics, 2022, 49 (1): 231- 243.
doi: 10.1002/mp.15328
9 MANIVANNAN S , COBB C , BURGESS S , et al. Subcategory classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification[J]. IEEE Transactions on Medical Imaging, 2017, 36 (5): 1140- 1150.
doi: 10.1109/TMI.2017.2653623
10 WEI Xiushen , YE Hanjia , MU Xin , et al. Multi-instance learning with emerging novel class[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (5): 2109- 2120.
11 ZHANG Yalin, ZHOU Zhihua. Multi-instance learning with key instance shift[C]//International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 3441-3447.
12 XU Xin, FRANK E. Logistic regression and boosting for labeled bags of instances[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2004: 272-281.
13 MELKI G , CANO A , VENTURA S . MIRSVM: multi-instance support vector machine with bag representatives[J]. Pattern Recognition, 2018, 79, 228- 241.
doi: 10.1016/j.patcog.2018.02.007
14 LUAN Tianxiang , LUO Tingjin , ZHUGE Wenzhang , et al. Optimal representative distribution margin machine for multi-instance learning[J]. IEEE Access, 2020, 8, 74864- 74874.
doi: 10.1109/ACCESS.2020.2988764
15 CHIKONTWE P, KIM M, NAM S J, et al. Multiple instance learning with center embeddings for histopathology classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima: Springer, 2020: 519-528.
16 YANG Mei , ZHANG Yuxuan , WANG Xizhao , et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (9): 5456- 5467.
17 AMORES J . Multiple instance classification: review, taxonomy and comparative study[J]. Artificial Intelligence, 2013, 201, 81- 105.
doi: 10.1016/j.artint.2013.06.003
18 WEI Xiushen, WU Jianxin, ZHOU Zhihua. Scalable multi-instance learning[C]//International Conference on Data Mining. Shenzhen: IEEE, 2014: 1037-1042.
19 ZHANG Minling , ZHOU Zhihua . Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31 (1): 47- 68.
doi: 10.1007/s10489-007-0111-x
20 CHEN Yixin , BI Jinbo , WANG J Z . MILES: multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (12): 1931- 1947.
doi: 10.1109/TPAMI.2006.248
21 LI Wujun . MILD: multiple-instance learning via disambiguation[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (1): 76- 89.
22 HONG Richang , WANG Meng , GAO Yue , et al. Image annotation by multiple-instance learning with discriminative feature mapping and selection[J]. IEEE Transactions on Cybernetics, 2013, 44 (5): 669- 680.
23 WEI Xiushen , WU Jianxin , ZHOU Zhihua . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (4): 975- 987.
doi: 10.1109/TNNLS.2016.2519102
24 WU Jia , PAN Shirui , ZHU Xingquan , et al. Multi-instance learning with discriminative bag mapping[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1065- 1080.
doi: 10.1109/TKDE.2017.2788430
25 ZHANG Weijia, LI Jiuyong, LIU Lin. Robust multi-instance learning with stable instances[J/OL]. arXiv, 2019. https://arxiv.org/pdf/1902.05066.pdf.
26 FU Zhouyu , ROBLES-KELLY A , ZHOU Jun . MILIS: multiple instance learning with instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (5): 958- 977.
27 MIN Fan , ZHANG Shiming , CIUCCI D , et al. Three-way active learning through clustering selection[J]. International Journal of Machine Learning and Cybernetics, 2020, 11 (5): 1033- 1046.
doi: 10.1007/s13042-020-01099-2
28 ANDREWS S , TSOCHANTARIDIS I , HOFMANN T . Support vector machines for multiple-instance learning[J]. Neural Information Processing Systems, 2002, 14, 561- 568.
29 DECENCIERE E , ZHANG Xiwei , CAZUGUEL G , et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis and Stereology, 2014, 33 (3): 231- 234.
doi: 10.5566/ias.1155
30 KANDEMIR M , HAMPRECHT F A . Computer-aided diagnosis from weak supervision: a benchmarking study[J]. Computerized Medical Imaging and Graphics, 2015, 42, 44- 50.
doi: 10.1016/j.compmedimag.2014.11.010
31 ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non-iid samples[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal: ACM, 2009: 1249-1256.
32 XU Bicun, TING Kaiming, ZHOU Zhihua. Isolation set-kernel and its application to multi-instance learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: ACM, 2019: 941-949.
33 DEMSAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7, 1- 30.
[1] Mei YANG,Wenjing KE,Dandong WANG. Feasible region localization and fast causal instance selection for multi-instance learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 105-113, 126.
[2] WANG Gang, XU Xin-shun*. A new Multi-instance learning method for scene classification [J]. J4, 2010, 45(7): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZOU Guo-ping1, MA Ru-ning1, DING Jun-di2, ZHONG Bao-jiang3. Image retrieval based on saliency weighted color and texture[J]. J4, 2010, 45(7): 81 -85 .
[2] CHEN Li . The robust fault diagnosis filter design for uncertain singular systems[J]. J4, 2007, 42(7): 62 -65 .
[3] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[4] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[5] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation[J]. J4, 2007, 42(7): 33 -37 .
[6] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 .
[7] ZHANG De-yu,ZHAI Wen-guang . [J]. J4, 2006, 41(5): 4 -07 .
[8] YANG Jianhui1, ZHANG Jianping, CHENG Xinlu, YANG Xiangdong. Magnetic dipole transitions among 1s22s2p 3P0, of Be-like ions[J]. J4, 2009, 44(11): 29 -34 .
[9] PANG Yong,MU Zong-zhao,WANG Yue-hai,BAO Yu-hai,SUN Lei . Transpiration characteristics and its influencing factors of sixteen polar clones[J]. J4, 2006, 41(6): 168 -172 .
[10] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .