JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (10): 150-162.doi: 10.6040/j.issn.1671-9352.0.2025.121

Previous Articles    

Preparation of metal-coordinated sugar-based surfactant ionogels as epidermal electrodes

SU Yuanteng, WANG Jiayi, LI Ruijing, LI Minglu, HUANG Shengdi, GUO Menglu, WANG Xiaolin*   

  1. College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
  • Published:2025-10-17

Abstract: The method of surfactant self-assembly to construct supramolecular gel materials is an important way to obtain functional soft matter materials. Driven mainly by the metal coordination of zinc ions, supplemented by other intermolecular non-covalent interactions such as hydrogen bonds and hydrophobic solvents, an anionic glycosylated surfactant self-assembled in a protic ionic liquid of ethylammonium nitrate(EAN)to form a fibrous three-dimensional network structure. The formation mechanism, microscopic morphology and macroscopic properties of ionogels were deeply explored. It was confirmed that the ionogels, as epidermal electrodes, possessed the ability to monitor human electrophysiological signals with high quality, which expanding the application scope of supramolecular gel materials.

Key words: sugar-based surfactant, metal coordination, ionogel, electrophysiological signals

CLC Number: 

  • O648
[1] CUI H H, LI J G. Hydrogel adhesives for tissue recovery[J]. Advances in Colloid and Interface Science, 2025, 341:103496.
[2] JIANG L C, SHA Z H, ZHENG Y, et al. Bioinspired hydrogels thriving in harsh conditions: where soft materials conquer hard challenges[J]. Progress in Materials Science, 2025, 152:101459.
[3] LEI C X, LI Q, CHEN W S, et al. Biopolymeric gels: advancements in sustainable multifunctional materials[J]. Advanced Materials, 2025, 37(22):2419906.
[4] FENG W W, SUN L, JIN Z K, et al. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot[J]. Nature Communications, 2024, 15:4222.
[5] HE X N, ZHANG B, LIU Q J, et al. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance[J]. Nature Communications, 2024, 15:6431.
[6] GUO M R, ZHAO X J, XU J H, et al. Nanoscale control of morphologies enables robust and elastic ionogel for sensitive and high-resolution pressure sensing over wide linear range[J]. Chemical Engineering Journal, 2025, 508:160913.
[7] SU L, MOSQUERA J, MABESOONE M F J, et al. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water[J]. Science, 2022, 377(6602):213-218.
[8] BIANCO S, HALLAM STEWART F, PANJA S, et al. Forging out-of-equilibrium supramolecular gels[J]. Nature Synthesis, 2024, 3(12):1481-1489.
[9] ADAMS D J. Personal perspective on understanding low molecular weight gels[J]. Journal of the American Chemical Society, 2022, 144(25):11047-11053.
[10] CRIADO-GONZALEZ M, ALEGRET N, FRACAROLI A M, et al. Mixed conductive, injectable, and fluorescent supramolecular eutectogel composites[J]. Angewandte Chemie International Edition, 2023, 62(26):e202301489.
[11] WANG Z J, LI W, LI X Y, et al. Rapid self-strengthening in double-network hydrogels triggered by bond scission[J]. Nature Materials, 2025, 24(4):607-614.
[12] ZHANG C W, SI M Q, CHEN C, et al. Hierarchical engineering for biopolymer-based hydrogels with tailored property and functionality[J]. Advanced Materials, 2025, 37(22):2414897.
[13] LI X Y, GONG J P. Design principles for strong and tough hydrogels[J]. Nature Reviews Materials, 2024, 9(6):380-398.
[14] LOU X Y, ZHANG K, BAI Y J, et al. Self-assembled nanohelixes driven by host-guest interactions and metal coordination[J]. Angewandte Chemie International Edition, 2025, 64(2):e202414611.
[15] ZHAO Z H, CHEN S Y, ZHAO P C, et al. Mechanically adaptive polymers constructed from dynamic coordination equilibria[J]. Angewandte Chemie International Edition, 2024, 63(17):e202400758.
[16] WU S J, LIU Z, GONG C H, et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties[J]. Nature Communications, 2024, 15:4441.
[17] KANG B B, TANG H C, GAO M, et al. Fluorescent hydrogel producing ZnO for colorimetric detection of glutathione and cysteine[J]. Advanced Materials Interfaces, 2021, 8(20):2100765.
[18] WANG Y, XIE Y J, XIE X Y, et al. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure[J]. Advanced Functional Materials, 2023, 33(12):2210224.
[19] KWON J H, HONG S H, LEE G R, et al. Synergistic dual-cross-linking gelation: exploring the impact of metal-ligand complexation on ionogel performance[J]. ACS Applied Materials & Interfaces, 2024, 16(44):61115-61122.
[20] YAN C C, LI W Z, LIU Z Y, et al. Ionogels: preparation, properties and applications[J]. Advanced Functional Materials, 2024, 34(17):2314408.
[21] HUANG C Y, JIA X H, WANG D, et al. Stretchable ionogels: Recent advances in design, toughening mechanisms, material properties and wearable devices applications[J]. Chemical Engineering Journal, 2024, 490:151850.
[22] LUO Z H, LI W J, YAN J P, et al. Roles of ionic liquids in adjusting nature of ionogels: a mini review[J]. Advanced Functional Materials, 2022, 32:2203988.
[23] QIU Z F, WANG X L, WANG T T, et al. Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption[J]. Journal of Molecular Liquids, 2022, 351:118626.
[24] ZHANG M W, ZHAO L Y, TIAN F, et al. Bionic artificial skin based on self-healable ionogel composites with tailored mechanics and robust interfaces[J]. Advanced Materials, 2024, 36(35):2405776.
[25] ZHAO Y N, ZENG Q T, JIANG C C, et al. Self-powered, durable and high fire-safety ionogel towards Internet of Things[J]. Nano Energy, 2023, 116:108785.
[26] YANG M L, LI J H, WANG C Y, et al. Robust mechanically interlocked network ionogels[J]. Angewandte Chemie International Edition, 2025, 64(15):e202423847.
[27] WANG J Y, ZHANG S L, LI L L, et al. Glassy ionogels with high compressibility and strength for impact protection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(15):e2417978122.
[28] YE H T, WU B H, SUN S T, et al. Self-compliant ionic skin by leveraging hierarchical hydrogen bond association[J]. Nature Communications, 2024, 15:885.
[29] EVANS D F, YAMAUCHI A, WEI G J, et al. Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering[J]. The Journal of Physical Chemistry, 1983, 87(18):3537-3541.
[30] FUMINO K, WULF A, LUDWIG R. Hydrogen bonding in protic ionic liquids: reminiscent of water[J]. Angewandte Chemie International Edition, 2009, 48(17):3184-3186.
[31] SALVATI MANNI L, DAVIES C, WOOD K, et al. Unusual phosphatidylcholine lipid phase behavior in the ionic liquid ethylammonium nitrate[J]. Journal of Colloid and Interface Science, 2023, 643:276-281.
[32] ZHANG J Y, GUO M R, SU Y T, et al. Photochromic ionogel with a wide temperature range and fatigue resistance for high-resolution rewritable information record[J]. Chemical Engineering Journal, 2024, 495:153263.
[33] TANTALA J, LOYAWATTANANAN S, BOONPRAKOBSAK P, et al. Antilisterial effect of alkyl polyglycosides biosurfactant and modes of action[J]. International Journal of Biological Macromolecules, 2024, 280:135607.
[34] GREAVES T L, DRUMMOND C J. Ionic liquids as amphiphile self-assembly media[J]. Chemical Society Reviews, 2008, 37(8):1709-1726.
[35] GREAVES T L, DRUMMOND C J. Protic ionic liquids: properties and applications[J]. Chemical Reviews, 2008, 108(1):206-237.
[36] CHANDLER D. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005, 437(7059):640-647.
[37] WANG H Q, SONG S S, HAO J C, et al. Hydrogels triggered by metal ions as precursors of network CuS for DNA detection[J]. Chemistry, 2015, 21(34):12194-12201.
[38] ESTROFF L A, HAMILTON A D. Water gelation by small organic molecules[J]. Chemical Reviews, 2004, 104(3):1201-1218.
[39] SONG S S, SONG D D, TANG H C, et al. Ionogels as precursors to prepare ZnS nanoparticles for colorimetric sensing of sulfide ions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2):759-770.
[40] YANG D D, XIA S W, BAO M T, et al. A new class of amide-based organogels: from oil spill recovery to self-assembly structure analysis[J]. Journal of Materials Chemistry A, 2023, 11(12):6181-6190.
[41] YUAN J, WU W N, GUO L X, et al. Multistimuli-responsive and antifreeze aggregation-induced emission-active gels based on CuNCs[J]. Langmuir, 2022, 38(1):343-351.
[42] LIANG Y J, WANG K F, LI J J, et al. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator[J]. Materials Horizons, 2022, 9(6):1700-1707.
[43] ZHOU K J, TANG L, KUANG G Q, et al. Supramolecular ionogels enable highly efficient electrochromism[J]. Materials Horizons, 2025, 12(6):1992-2001.
[44] LI X Y, LI Q T, LEI N N, et al. Luminescent sodium deoxycholate ionogel induced by Eu3+ in ethylammonium nitrate[J]. ACS Omega, 2019, 4(1):2437-2444.
[45] RODDY G P T, MANNI L S, ATKIN R, et al. 12-Hydroxyoctadecanoic acid forms two kinds of supramolecular gels in nanostructured protic ionic liquids[J]. Journal of Colloid and Interface Science, 2025, 691:137384.
[46] CHEN T L, YE G, WU H W, et al. Highly conductive and underwater stable ionic skin for all-day epidermal biopotential monitoring[J]. Advanced Functional Materials, 2022, 32(46):2206424.
[47] WANG S, CHENG H L, YAO B, et al. Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(17):20735-20745.
[48] YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6):1642-1667.
[49] TANG H, LI Y F, CHEN B Q, et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise[J]. ACS Nano, 2022, 16(11):17931-17947.
[50] HUANG X X, CHEN C W, MA X H, et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes[J]. Advanced Functional Materials, 2023, 33(38):2302846.
[51] YANG G G, ZHU K H, GUO W, et al. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion[J]. Advanced Functional Materials, 2022, 32(29):2200457.
[52] RATMANOVA N K, POSVYATENKO A V, LEVINA I I, et al. Cytotoxicity of multi-purpose protic ionic liquids towards human dermal fibroblasts[J]. Journal of Molecular Liquids, 2025, 433:127948.
[1] Juan GAO,Xiao-lin WANG,Heinz HOFFMANN,Jing-cheng HAO. Ionic liquid gels [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 1-18.
[2] ZHANG Yao-jun, WAN Gang-qiang, YAN Lei, MA Qing-chang, LI Dong-xiang, ZHAO Ji-kuan. Assembled nanostructures of ZnO nanorods prepared by seed growth method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 14-19.
[3] ZHAO Guo-ping, CHEN Guo-hui . Stabilization of CTAB/C4H9OH/C7H16/H2O micro-emulsion system [J]. J4, 2007, 42(11): 19-22 .
[4] ZHOU Song, NING Hualong, CHEN Xiangyan, FENG Yujiao, XU Wenlong. Self-powered hydrogel sensors and their applications [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 79-104.
[5] HAN Xinxin, LI Mengqi, ZHANG Peiyu, CUI Jiwei. Synthesis and application of biosurfactants [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 13-22.
[6] ZHU Yuanyu, ZHAO Hongde, ZHAO Zhiqing, WANG Xinhao, WANG Jiqian, WANG Dong. pH-responsive mechanism of cuttlefish melanin nanospheres and their effect on photoprotection of hair scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 127-140.
[7] FENG Sheng-yu, CHEN Zi-xu, WANG Deng-xu,. Polysiloxane-based fluorescent materials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(10): 99-112.
[8] LI Guangle, YAN Xuehai. Interfacial tension of biomolecular condensates [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 1-12.
[9] MA Wenchao, DU Na, HOU Wanguo. Surface tension and adsorption behavior of liquid homogeneous mixtures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 105-116.
[10] JIANG Xiaoqian, SUN Xiuping, SONG Aixin. Double emulsion gels stabilized by surfactants and nanoparticles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 141-149.
[11] LIU Xinyi, LI Jieling, WANG Anhe, LI Qi, BAI Shuo. Preparation of silk fibroin enhanced peptide self-assembled hydrogel and its application in the construction of tumor organoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(10): 117-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!