JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 74-78.doi: 10.6040/j.issn.1671-9352.0.2023.441
YANG Xiaofei1, XIAO Feihu1, MA Yingcang1, XIN Xiaolong1,2*
CLC Number:
[1] KALMBACH G. Orthomodular lattices[M]. London: Academic Press, 1983. [2] FREYTES H. An equational theory for σ-complete orthomodular lattices[J]. Soft Computing, 2020, 24:10257-10264. [3] FAZIO D, LEDDA A, PAOLI F. Residuated structures and orthomodular lattices[J]. Studia Logica, 2021, 9:1201-1239. [4] WU Yali, YANG Yichuan. Orthomodular lattices as L-algebras[J]. Soft Computing, 2020, 24:14391-14400. [5] IORGULESCU A. On quantum-MV algebras, part Ⅰ: the orthomodular algebras[J]. Scientific Annals of Computer Science, 2021, 31(2):163-222. [6] MCDONALD J, BIMBÓ K. Topological duality for orthomodular lattices[J]. Mathematical Logic Quarterly, 2023, 69(2):174-191. [7] BONZIO S, CHAJDA I. A note on orthomodular lattices[J]. International Journal of Theoretical Physics, 2017, 56:3740-3743. [8] BLYTH T S. Lattices and ordered algebraic structures[M]. London: Springer, 2005. |
[1] | ZHAO Ma-pan, FAN Feng-li, XIE Yong-jian. Boolean atoms of Heyting algebras and their application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 71-80. |
[2] | CAO Fa-sheng, XIAO Fang. Principal congruences on modal algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 104-108. |
[3] | LIU Li-jun. Characterizations and properties of triple-δ-derivation in Boolean algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 95-99. |
[4] | LIU Wei-feng. Soft quotient Boolean algebra of Boolean algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 57-61. |
[5] | LIU Wei-feng, DU Ying-xue, XU Hong-wei. Interval soft Boolean algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 104-110. |
[6] | FENG Min1, XIN Xiao-long1*, LI Yi-jun1,2. On f derivations and g derivations of MV-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 50-56. |
[7] | LIU Ni. On (P,Q) outer generalized inverse in Hilbert space#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 90-94. |
[8] | LIU Wei-feng. Soft Boolean algebra [J]. J4, 2013, 48(8): 56-62. |
[9] | LIU Chun-hui1,2. Interval valued (∈,∈∨ q)fuzzy subalgebras of Boolean algebras [J]. J4, 2013, 48(10): 94-98. |
[10] | LIU Qin, CAO Huai-Xin, WANG Qiu-Fen. Generalized perturbations of Bessel sequences in a Hilbert space [J]. J4, 2010, 45(2): 50-53. |
[11] | ZHONG Jin,LIU Xiao-ji . A representation of the generalized inverse A(2)T,S of Hilbert space operators and their applications [J]. J4, 2008, 43(3): 54-57 . |
|