JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 34-51.doi: 10.6040/j.issn.1671-9352.0.2023.373
JIANG Lihui1, XU Jinhui2, CHEN Huayou3
CLC Number:
[1] ZADEH L A. Fuzzy sets[J].Information & Control, 1965, 8(3):338-353. [2] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010:529-539. [3] CHEN N, XU Z S, XIA M M. Interval-valued hesitant preference relations and their applications to group decision making[J]. Knowledge-Based Systems, 2013, 37:528-540. [4] 张迪,成央金,杨柳. 区间犹豫梯形模糊Bonferroni Mean算子及其应用[J]. 计算机工程与应用,2020,56(1):53-62. ZHANG Di, CHENG Yangjin, YANG Liu. Interval hesitant trapezoidal fuzzy bonferroni mean operator and its application[J]. Computer Engineering and Applications, 2020, 56(1):53-62. [5] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1):183-190. [6] 陈华友,陈诚. 基于I-IOWG算子集结的组合判断矩阵的相容性和一致性[J]. 系统工程与电子技术,2009,31(9):2137-2140. CHEN Huayou, CHEN Cheng. Research on compatibility and consistency of combination judgment matrices based on I-IOWG operators[J]. Systems Engineering and Electronics, 2009, 31(9):2137-2140. [7] ZHOU L G, CHEN H Y. Continuous generalized OWA operator and its application to decision making[J]. Fuzzy Sets and Systems, 2011, 168(1):18-34. [8] ZHOU L G, CHEN H Y, MERIGÓ J M, et al. Uncertain generalized aggregation operators[J]. Expert Systems with Applications, 2012, 39(1):1105-1117. [9] WAN Shuping. Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Mathematical Modelling, 2013, 37(6):4112-4126. [10] WAN S P, YI Z H. Power average of trapezoidal intuitionistic fuzzy numbers using strict t-norms and t-conorms[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1035-1047. [11] WAN S P, DONG J Y. Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Soft Computing Journal, 2015, 29:153-168. [12] YAGER R R. On generalized Bonferroni mean operators for multi-criteria aggregation[J]. International Journal of Approximate Reasoning, 2009, 50(8):1279-1286. [13] BELIAKOV G, PRADERA A, CALVO T. Choice and construction of aggregation functions[M] //Studies in Fuzziness and Soft Computing. Berlin: Springer Berlin Heidelberg, 2007:261-269. [14] MUIRHEAD R F. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters[J]. Proceedings of the Edinburgh Mathematical Society, 1902, 21:144. [15] 臧誉琪,韩姗姗,费晓香. q-阶正交犹豫模糊幂Muirhead平均算子及推荐应用[J]. 模糊系统与数学,2020,34(5):90-99. ZANG Yuqi, HAN Shanshan, FEI Xiaoxiang. q-rung orthopair hesitant fuzzy power muirhead mean operators with their application to recommendations[J]. Fuzzy Systems and Mathematics, 2020, 34(5):90-99. [16] YANG Z L, CHANG J P. A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator[J]. Environmental Research, 2021, 193:110385. [17] 任耀军,袁修久,黄林,等. 毕达哥拉斯三角犹豫模糊Muirhead平均算子的目标威胁评估应用[J]. 电光与控制,2021,28(4):16-20,63. REN Yaojun, YUAN Xiujiu, HUANG Lin, et al. Pythagorean hesitant triangular fuzzy muirhead mean operator and its application in target threat assessment[J]. Electronics Optics & Control, 2021, 28(4):16-20, 63. [18] PUNETHA T, KOMAL. Picture fuzzy power Muirhead mean operators and their application to multi attribute decision making[J]. Journal of Industrial and Management Optimization, 2023, 19(6):4321-4349. [19] IMRAN R, ULLAH K, ALI Z, et al. The theory of prioritized Muirhead mean operators under the presence of complex single-valued Neutrosophic values[J]. Decision Analytics Journal, 2023, 7:100214. [20] CHOQUET G. Theory of capacities[J]. Annales de LInstitut Fourier, 1954, 5:131-295. [21] 罗世华,刘俊. 改进排序的梯形直觉模糊Choquet Bonferroni算子的多属性群决策方法[J]. 中国管理科学,2020,28(1):134-143. LUO Shihua, LIU Jun. A novel sort method for trapezoidal intuitionistic fuzzy MAGDM with choquet bonferroni means[J]. Chinese Journal of Management Science, 2020, 28(1):134-143. [22] 刘超,汤国林,刘宸琦,等. 基于区间对偶犹豫不确定语言广义Banzhaf Choquet积分算子的多属性决策方法[J]. 系统工程理论与实践,2018,38(5):1203-1216. LIU Chao, TANG Guolin, LIU Chenqi, et al. Muti-criteria decision making based on interval-valued dual hesitant uncertain linguistic generalized Banzhaf Choquet integral operator[J]. Systems Engineering-Theory & Practice, 2018, 38(5):1203-1216. [23] DONG J Y, LIN L L, WANG F, et al. Generalized choquet integral operator of triangular atanassovs intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2016, 24(5):647-683. [24] 万树平,董九英. 基于三角直觉模糊数Choquet积分算子的多属性决策方法[J]. 中国管理科学,2014,22(3):121-129. WAN Shuping, DONG Jiuying. Multi-attribute decision making based on triangular intuitionistic fuzzy number choquet integral operator[J]. Chinese Journal of Management Science, 2014, 22(3):121-129. [25] TAN C Q, CHEN X H. Induced intuitionistic fuzzy Choquet integral operator for multicriteria decision making[J]. International Journal of Intelligent Systems, 2011, 26(7):659-686. [26] PENG J J, WANG J Q, HU J H, et al. Multi-criteria decision-making approach based on single-valued neutrosophic hesitant fuzzy geometric weighted choquet integral heronian mean operator[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(3):3661-3674. [27] JOSHI D, KUMAR S. Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making[J]. European Journal of Operational Research, 2016, 248(1):183-191. [28] PENG X D, YANG Y. Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making[J]. International Journal of Intelligent Systems, 2016, 31(10):989-1020. [29] LIAO Z Q, LIAO H C, TANG M, et al. A choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: case study of higher business education evaluation[J]. Information Fusion, 2020, 62:121-133. [30] WU Y N, ZHANG T, YI L Q. Regional energy Internet project investment decision making framework through interval type-2 fuzzy number based Choquet integral fuzzy synthetic model[J]. Applied Soft Computing, 2021, 111:107718. [31] PEREIRA A A, PEREIRA M A. Energy storage strategy analysis based on the choquet multi-criteria preference aggregation model: the Portuguese case[J]. Socio-Economic Planning Sciences, 2023, 85:101437. [32] WAN S P, YAN J, ZOU W C, et al. Generalized shapley choquet integral operator based method for interactive interval-valued hesitant fuzzy uncertain linguistic multi-criteria group decision making[J]. IEEE Access, 2020, 8:202194-202215. [33] 陈树伟,蔡丽娜. 区间值犹豫模糊集[J].模糊系统与数学,2013,27(6):38-44. CHEN Shuwei, CAI Lina. Interval-valued Hesitant Fuzzy Sets[J]. Fuzzy Systems and Mathematics, 2013, 27(6):38-44. [34] SUGENO M. Theory of fuzzy integral and its application[D]. Doc Thesis Tokyo Institute of Technology, 1974:96-102. [35] MUROFUSHI T, SUGENO M. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227. [36] QIN J D, LIU X W. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection[J]. Kybernetes, 2016, 45(1):2-29. |
|