JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 95-105.doi: 10.6040/j.issn.1671-9352.0.2023.427
WU Qi, YANG Yanqi*, TAO Shuangping
CLC Number:
[1] YABUTA K. Generalizations of Calderón-Zygmund operators[J]. Studia Mathematica, 1985, 82(1):17-31. [2] COIFMAN R R, MEYER Y. Au-delà des opérateurs pseudo-différentiels[M]. Paris: Société mathématique de France, 1978:76-116. [3] LIU Z G, LU S Z. Endpoint estimates for commutators of Calderón-Zygmund type operators[J]. Kodai Mathematical Journal, 2002, 25(1):79-88. [4] ZHANG P, XU H. Sharp weighted estimates for commutators of Calderón-Zygmund type operators[J]. Acta Mathematica Sinica, 2005, 48(4):625-636. [5] DIENING L, RUICKA M. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics[J]. Journal FürDie Reine und Angewandte Mathematik, 2003(563):197-220. [6] LIU W Q, LU S Z. Calderón-Zygmundoperaors on the Hardy spaces of weighted Herz type[J]. Approximation Theory and Its Applications, 1997, 13(2):1-10. [7] SHEN C H, XU J S. A vector-valued estimate of multilinear Calderón-Zygmund operators in Herz-Morrey spaces with variable exponents[J]. Hokkaido Mathematical Journal, 2017, 46(3):351-380. [8] ZHENG T T, TAO X X, WU X M. Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space[J]. Journal of Inequalities and Applications, 2014(1):1-18. [9] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators and commutators in variable exponents Herz space[J]. Open Mathematics, 2018, 16(1):1607-1620. [10] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents[J]. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys, 2020, 82(1):35-44. [11] GULIYEV V S. Calderón-Zygmund operators with kernels of Dinis type on generalized weighted variable exponent Morrey spaces[J]. Positivity, 2021, 25(5):1771-1788. [12] ACERBI E, MINGIONE G. Regularity results for stationary electro-rheological fluids[J]. Archive for Rational Mechanics and Analysis, 2002, 164(3):213-259. [13] MINGIONE G, ACERBI E. Gradient estimates for a class of parabolic systems[J]. Duke Mathematical Journal, 2007, 136(1):285-320. [14] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operators on variable L-p spaces[J]. Annales Academiae Scientiarum Fennicae Mathematica, 2006, 31(1):239-264. [15] IZUKI M. Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system[J]. East journal on approximations, 2009, 15(1):87-110. [16] IZUKI M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent[J]. Glasnik Matematicki, 2010, 45(2):475-503. [17] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59(2):199-213. [18] IZUKI M, NOI T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent[J]. Journal of Inequalities and Applications, 2016, 2016(1):1-11. [19] IZUKI M, NOI T. Two weighted herz spaces with variable exponents[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(1):169-200. [20] PÉREZ C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L-p spaces with different weights[J]. Proceedings of the London Mathematical Society, 1995, 71(1):135-157. [21] ZUZAO J D. Fourier analysis[M]. Providence: American Mathematical Soc, 2001:133-156. [22] LU G Z, ZHANG P. Multilinear Calderón-Zygmund operators with kernels of Dinis type and applications[J]. Nonlinear Analysis, 2014, 107:92-117. [23] IZUKI M, NOI T. An intrinsic square function on weighted Herz spaces with variable exponent[J]. Journal of Mathematical Inequalities, 2017, 11(3):799-816. |
|