JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (12): 71-75.doi: 10.6040/j.issn.1671-9352.0.2013.595

Previous Articles     Next Articles

Totally real minimal submanifolds in quasi-complex projective space

LIU Min, SONG Wei-dong   

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2013-11-28 Revised:2014-11-04 Online:2014-12-20 Published:2014-12-20

Abstract: The totally real minimal submanifolds in quasi-complex projective space was studied.Some pinching results were obtained by method of moving frams and improve the related results.

Key words: totally real submanifold, totally geodesic, minimal, quasi-complex projective space

CLC Number: 

  • O186
[1] 沈一兵. 复射影空间的全实极小子流形[J]. 科学通报,1983(3):131-133. SHEN Yibing. Totally real minimal submanifolds in a complex projective space[J]. Journal of Scince, 1983(3):131-133.
[2] 沈一兵. 全实极小子流形的数量曲率[J]. 数学年刊, 1991(12A):573-577. SHEN Yibing. Scalar curvature of totally real minimal submanifolds[J]. Chinese Annals of Mathematics: Ser A, 1991(12A):573-577.
[3] 舒世昌. 关于复射影空间中全实极小子流形的注记[J].咸阳师专学报,1995,10(6):3-7. SHU Shichang. Remark of totally real minimal submanifolds in a complex projective space[J]. Journal of Xianyang Normal University, 1995, 10(6):3-7.
[4] 张量,宋卫东. 复射影空间中法丛平坦的全实伪脐子流形[J]. 数学物理学报, 2007,27A(4):688-695. ZHANG Liang, SONG Weidong. Totally real pseudo-umbilical submanifolds with flat normal bundle of complex projective space[J]. Acta Mathematica Scientia, 2007, 27A(4):688-695.
[5] YAU S T. Submanifolds with constant mean curvature (I)[J]. Amer J Math, 1975, 97(1):76-100.
[6] LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Arch Math, 1992, 58:582-594.
[7] 纪永强.子流形几何[M].北京:科学出版社, 2004. JI Yongqiang. Submanifolds geometry[M]. BeiJing: Science Press, 2004.
[1] FENG De-cheng, ZHANG Xiao, ZHOU Lin. A class of minimal inequalities for demimartingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 65-69.
[2] DONG Ke, LÜ Wen-yuan, WANG Yong-zhi. Optimal preventive maintenance policy for second-hand equipment under lease considering residual value [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 95-102.
[3] YIN Jie-jie. Solving the algebraic model of k-dominating sets of graph by Grbner basis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 130-136.
[4] DAI Li-fang, LIANG Mao-lin, HE Wan-sheng. The minimal and maximal ranks problems of matrix expression A-BXC under generalized symmetric constraints [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 90-94.
[5] LIN Zi-qiong, WANG Jing-qian, ZHU William. Computing minimal description and maximal description in covering-based rough sets through matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 97-101.
[6] JIANG Jing1, LI Ning2, WANG Ting1. The solvable condition researched on a pair of matrix equations [J]. J4, 2013, 48(10): 47-50.
[7] ZUO Ke-zheng. Two equalities on the rank of polynomial of matrices [J]. J4, 2011, 46(4): 90-92.
[8] ZHANG Kui, TANG Yi-li, GE Mao-rong*. Minimal injective cogenerator of principal ideal domain [J]. J4, 2011, 46(12): 44-45.
[9] ZHANG Fengxia1, LI Ying1,2, GUO Wenbin1, ZHAO Jianli1. Extremal ranks for block Hermitian and skew-Hermitian matrices [J]. J4, 2010, 45(4): 106-110.
[10] ZHOU Xiao-qiang, LIU Ren-ren. Elimination of the not minimal covering of preserving binary regularly separable relations in partial four-valued logic [J]. J4, 2008, 43(12): 24-27.
[11] QI Ying-hua,QI Ai-qin . Periodic boundary value problems for differential equations with arguments [J]. J4, 2007, 42(7): 66-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!