JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (5): 121-129.doi: 10.6040/j.issn.1671-9352.0.2015.383
Previous Articles Next Articles
NIE Tian-yang, SHI Jing-tao*
CLC Number:
[1] PARDOUX E, PENG S G. Adapted solution of a backward stochastic differential equation[J].Systems & Control Letters, 1990, 14(1):55-61. [2] ANTONELLI F. Backward-forward stochastic differential equations[J]. The Annals of Applied Probability, 1993, 3(3):777-793. [3] PENG S G, WU Z. Fully coupled forward-backward stochastic differential equations and applications to optimal control[J]. SIAM Journal on Control and Optimization, 1999, 37(3):825-843. [4] YONG J. Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions[J]. SIAM Journal on Control and Optimization, 2010, 48(6): 4119-4156. [5] YONG J. A leader-follower stochastic linear quadratic differential game [J]. SIAM Journal on Control and Optimization, 2002, 41(4):1015-1041. [6] CVITANIC J, WAN X, ZHANG J. Optimal contracts in continuous-time models[J]. International Journal of Stochastic Analysis, 2006, 95203:1-27. [7] MA J, WU Z, ZHANG D, et al. On wellposedness of forward-backward SDEs-A unified approach [J]. The Annals of Applied Probability, 2011, 25(4):2168-2214. [8] PENG S G. Backward stochastic differential equations and applications to optimal control [J].Applied Mathematics and Optimization, 1993, 27(2):125-144. [9] WU Z. Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems[J]. System Science and Mathematical Science, 1998, 11(3):249-259. [10] SHI J T, WU Z. The maximum principle for fully coupled forward-backward stochastic control system[J]. Acta Automatica Sinica, 2006(2):161-169. [11] 吴臻, 徐爱平. 状态约束下完全耦合的正倒向随机控制问题的最大值原理[J]. 山东大学学报(理学版), 2000, 35(4):373-380. WU Zhen, XU Aiping. The maximum principle for fully coupled forward-backward stochastic control problems with state constraints[J]. Journal of Shandong University(Natural Science), 2000, 35(4):373-380. [12] 史敬涛. 状态约束下完全耦合的正倒向随机控制问题的最大值原理[J]. 山东大学学报(理学版), 2007, 42(1): 44-48. SHI Jingtao. The maximum principle for fully coupled forward-backward stochastic control problems with state constraints [J]. Journal of Shandong University(Natural Science), 2007, 42(1):44-48. [13] LI J, WEI Q. Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations[J]. SIAM Journal on Control and Optimization, 2013, 52(3):1622-1662. [14] YONG J M, ZHOU X Y. Stochastic controls: Hamiltonian systems and HJB equations[M]. New York: Springer-Verlag, 1999. [15] SHI J T, YU Z. Relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems and applications[J]. Mathematical Problems in Engineering, 2013, 2013(4):46-49. [16] WU Z, YU Z. Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations [J]. Stochastic Processes and Their Applications, 2014, 124(12):3921-3947. |
|