JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 49-55.doi: 10.6040/j.issn.1671-9352.0.2014.175

Previous Articles     Next Articles

Symmetry, reductions and exact solutions of the (2+1)-dimension Caudrey-Dodd-Gibbon equation

LIU Yong, LIU Xi-qiang   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:2014-04-23 Revised:2014-09-26 Online:2015-04-20 Published:2015-04-17

Abstract: Using the classical Lie group method, we find the classical symmetry and reductions of (2+1)-dimensional Caudrey-Dodd-Gibbon(CDG for short) equation. At the same time, a great many of solutions are derived by solving the reduction equations, including the rational functions, hyperbolic functions, trigonometric functions, and Jacobi elliptic function solutions.

Key words: exact solutions, symmetry, reduction, (2+1)-dimension CDG equation, classical Lie group method

CLC Number: 

  • O175.2
[1] 尹君毅. 扩展的(G'/G)展开法和Zakharov方程组的新精确解[J]. 物理学报, 2013, 62(20):5-9. YIN Junyi. Extended expansion method for (G'/G) and new exact solutions of Zakharov equations[J]. Acta Physica Sinica, 2013, 62(20):5-9.
[2] ZHENG Bin. Exp-function method for solving fractional partial differential equations[J]. Nfworldjornal, 2013, 116(1):66-67.
[3] BHRAWY A H, ABDELKAWY M A, BISWAS A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4):915-925.
[4] ALI A T. New generalized Jacobi elliptic function rational expansion method[J]. Journal of Computational and Applied Mathematics, 2011, 235(14):4117-4127.
[5] 李宁, 刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解[J]. 物理学报, 2013, 62(16):10-16. LI Ning, LIU Xiqiang. Symmetries, reductions and exact solutions of Broer-Kau-Kupershmidt system[J]. Acta Physica Sinica, 2013, 62(16):10-16.
[6] 张颖元, 刘希强, 王岗伟. (2+1)维非线性发展方程的对称约化和显式解[J]. 量子电子学报, 2012, 29(4):411-416. ZHANG Yingyuan, LIU Xiqiang, WANG Gangwei. Symmetry reductions and explicit solutions of (2+1)-dimensional nonlinear evolution equation[J]. Chinese Journal of Quantum Electronics, 2012, 29(4):411-416.
[7] LIU Na, LIU Xiqiang. Similarity reductions and similarity solutions of the (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. Chin Phys Lett,2008, 25(10):3527–3530.
[8] 陈美, 刘希强. Konopelchenko-Dubrovsky方程组的对称, 精确解和守恒律[J]. 纯粹数学与应用数学, 2011, 27(1):533-539. CHEN Mei, LIU Xiqiang. Exact solutions and conservation laws of the Konopelchenko-Dubrovsky equations[J]. Pure and Applied Mathematics, 2011, 27(4):533-539.
[9] SAWADA K, KOTERA T. A method for finding N-soliton solutions of the KdV equation and KdV-like equation[J]. Progress of Theoretical Physics, 1974, 51(5):1355-1367.
[10] 党林. (2+1)维Caudery-Dodd-Gibbon(CDG)方程的精确解[J]. 吉林师范大学学报: 自然科学版, 2011, 32(2):56-59. DANG Lin . Exact solutions of the(2+1)-dimensional CauderDodd-Gibbon(CDG) equation[J]. Jilin Normal University Journal: Natural Science Edition, 2011, 32(2): 56-59.
[1] LI Tong-jun, HUANG Jia-wen, WU Wei-zhi. Attribute reduction of incomplete contexts based on similarity relations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 9-16.
[2] ZUO Zhi-cui, ZHANG Xian-yong, MO Zhi-wen, FENG Lin. Block discernibility matrix based on decision classification and its algorithm finding the core [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 25-33.
[3] ZHANG En-sheng. Composition and structure on attribute reduction of interval-set concept lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 17-24.
[4] CHENG Xi, WANG Chuan-xu, XU Lang. Decision-making in low-carbon supply chain considering altruism preference [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(5): 41-52.
[5] LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60.
[6] HU Qian, MI Ju-sheng, LI Lei-jun. The fuzzy belief structure and attribute reduction based on multi-granulation fuzzy rough operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 30-36.
[7] WANG Xiao-yan, SHEN Jia-lan, SHEN Yuan-xia. Graded multi-granulation rough set based on weighting granulations and dominance relation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 97-104.
[8] LI Yu, LIU Xi-qiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 77-84.
[9] CHEN Xue, WEI Ling, QIAN Ting. Attribute reduction in formal decision contexts based on AE-concept lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 95-103.
[10] HUANG Wei-ting, ZHAO Hong, ZHU William. Adaptive divide and conquer algorithm for cost-sensitive attribute reduction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 98-104.
[11] LI Lin, ZHANG Huan-shui. Stabilization for discrete-time systems with multiple input delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 91-97.
[12] QIU Ting-ting, LI Ke-dian. μ-reduction based on the subset of the objects in inconsistent information systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 35-39.
[13] YAN Li-mei, XU Feng-sheng. Attribute conjunctive expansion-reduction characteristics and #br# intelligent discovery of P-information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 98-103.
[14] WANG Lei, HE Chen, XIE Jiang-ning. Symmetry detection of point-based 3D models algorithm based on weighted PCA [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 166-170.
[15] ZHANG Yan-lan, LI Chang-qing. On invariance properties of covering-based rough sets under consistent function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!