JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (2): 32-37.doi: 10.6040/j.issn.1671-9352.0.2017.359
Previous Articles Next Articles
ZHANG Shen-gui
CLC Number:
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5:105-116. [2] RUZICKA M. Electrorheologial fluids: modeling and mathematial theory[M]. Berlin: Springer-Verlag, 2000. [3] 黎芳, 刘瑞华. p(x)-调和映射在图像恢复中的应用[J].中国图象图形学报,2008,13(1):19-23. LI Fang, LIU Ruihua.The application of p(x)-Harmonic mapping in image processing[J]. Journal of Image and Graphics, 2008, 13(1):19-23. [4] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4):1383-1406. [5] AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents[J]. Electron J Differential Equations, 2009, 153:1-13. [6] LIN Lin, TANG Chunlei. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations[J]. Acta Mathematica Scientia, 2013, 33(1):155-170. [7] YE Yiwei, TANG Chunlei. Infinitely many solutions for fourth-order elliptic equations[J].J Math Anal Appl, 2012, 394(2):841-854. [8] YIN Honghui, LIU Ying. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharnonic operator[J]. Bull Korean Math Soc, 2013, 50(6):1817-1826. [9] KONG Lingju. Eigenvalues for a fourth order elliptic problem[J]. Proceedings of the American Mathematical Society, 2015, 143(1):249-258. [10] HEIDARKHANI S, AFROUZI G A, MORADI S, et al. Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions[J]. ZAngew Math Phys, 2016, 67(3):1-13. [11] BARTSCH T. Infinitely many solutions of a symmetric Dirichlet problem[J]. Nonlinear Analysis, 1993, 20(10):1205-1216. [12] MIYAGAKI O H, SOUTO M S. Superlinear problems without Ambrosetti and Rabinowitz growth condition[J]. Journal Differential Equations, 2008, 245(12):3628-3638. [13] TANG Chunlei, WU Xingping. Periodic solutions for a class of new superquadratic second order Hamiltonian systems[J]. Appl Math Lett, 2014, 34(1):65-71. [14] YE Yiwei. Infinitely many solutions for Kirchhoff type problems[J]. Differential Equations Applications, 2013, 5(1):83-92. [15] 张申贵. 带p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版),2016,51(10):48-53. ZHANG Shengui. Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator[J]. Journal of Shandong University(Natural Science), 2016, 51(10):48-53. |
|