JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (7): 44-51.doi: 10.6040/j.issn.1671-9352.1.2016.PC6
Previous Articles Next Articles
ZHANG Peng1, WANG Su-ge1,2*, LI De-yu1,2, WANG Jie1
CLC Number:
[1] HEYDARI A, ALI TAVAKOLI M, SALIM N, et al. Detection of review spam: asurvey[J]. Expert Systems with Applications, 2015, 42(7):3634-3642. [2] JINDAL N, LIU B. Analyzing and detecting review spam[C] // Proceeding of 7th IEEE International Conference on Data Mining(ICDM 2007). New York: IEEE, 2007: 547-552. [3] CASTILLO C, DONATO D, BECCHETTI L, et al. A reference collection for Web spam[J]. ACM SigirForum, 2006, 40(2):11-24. [4] FETTERLY D, MANASSE M, NAJORK M. Spam, damn spam, and statistics:using statistical analysis to locate spam Web pages[C] // Proceedings of the 7th International Workshop on the Web and Databases: Collocated with ACM Sigmod/pods 2004. New York: ACM, 2004: 1-6. [5] JINDAL N, LIU B. Opinion spam and analysis[C] // Proceedings of the 2008 International Conference on Web Search and Data Mining. New York: ACM, 2008: 219-230. [6] LI H, CHEN Z, MUKHERJEE A, et al. Analyzing and detecting opinion spam on alarge-scale dataset via temporal and spatial patterns[C] // Proceedings of The 9th International AAAI Conference on Web and Social Media(ICWSM-15). Menlo Park: ICWSM, 2015: 26-29. [7] XIE S, WANG G, LIN S, et al. Review spam detection via temporal pattern discovery[C] // Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 823-831. [8] FEI G, MUKHERJEE A, LIU B, et al. Exploiting burstiness in rviews for review spammer detection[J]. ICWSM, 2013, 13:175-184. [9] SHARMA K, LIN K I. Review spam detector with rating consistency check[C] // Proceedings of the 51st ACM Southeast Conference. New York: ACM, 2013: 34-39. [10] MUKHERJEE A, KUMAR A, LIU B, et al. Spotting opinion spammers using behavioral footprints[C] // Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 632-640. [11] KARAMI A, ZHOU B. Online review spam detection by new linguistic features[C] // iConference 2015 Proceedings.Urbana: IDEALS, 2015: 1-5. [12] 刁宇峰, 杨亮, 林鸿飞. 基于LDA模型的博客垃圾评论发现[J]. 中文信息学报, 2011, 25(1):41-48. DIAO Yufeng, YANG Liang, LIN Hongfei. LDA-based opinion spam discovering[J]. Journal of Chinese Information Processing, 2011, 25(1):41-48. [13] MUKHERJEE A, VENKATARAMAN V. Opinion spam detection: an unsupervised approach using generative models[J]. Techincal Report, UH, 2014(07):1-11. [14] XU Q, ZHAO H. Using deep linguistic features for finding deceptive opinion spam[C] // In Proceedings of COLING 2012. Stroudsburg: ACL, 2013: 1341-1350. [15] AL NAJADA H, ZHU X. iSRD: spam review detection with imbalanced data distributions[C] // Proceeding of Information Reuse and Integration(IRI), 2014 IEEE 15th International Conference on Information Reuse and Integration. New York: IEEE, 2014: 553-560. [16] LI J, OTT M, CARDIE C, et al. Towards a general rule for identifying deceptive opinion spam[C] // InProceedings of the 52ndAnnual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 1566-1576. [17] LIN Y, ZHU T, WANG X, et al. Towards online review spam detection[C] // Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, 2014: 341-342. [18] 何珑. 基于随机森林的产品垃圾评论识别[J]. 中文信息学报, 2015, 29(3):150-154. HE Long. Identification of product review spam by random forest[J]. Journal of Chinese Information Processing, 2015, 29(3):150-154. [19] LI H, LIU B, MUKHERJEE A, et al. Spotting fake reviews using positive-unlabeled learning[J]. Computación y Sistemas, 2014, 18(3):467-475. |
[1] | SU Feng-long, XIE Qing-hua, HUANG Qing-quan, QIU Ji-yuan, YUE Zhen-jun. Semi-supervised method for attribute extraction based on transductive learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 111-115. |
[2] | DU Hong-le, ZHANG Yan, ZHANG Lin. Intrusion detection on imbalanced dataset [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 50-57. |
|