JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (11): 50-57.doi: 10.6040/j.issn.1671-9352.2.2015.273
Previous Articles Next Articles
DU Hong-le, ZHANG Yan, ZHANG Lin
CLC Number:
[1] VAPNIK V N. Statistical learning theory[M]. New York: John Wiley and Sons, 1998. [2] 陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. CHEN Yisong, WANG Guoping, DONG Shihai. A progressive transductive inference algorithm based on support vector machine[J]. Journal of Software, 2003, 14(3):451-460. [3] 王安娜,李云路,赵锋云, 等.一种新的半监督直推式支持向量机分类算法[J].仪器仪表学报,2011,32(7):1546-1550. WANG Anna, LI Yunlu, ZHAO Fengyun, et al. Novel semi-supervised classification algorithm based on TSVM[J]. Chinese Journal of Scientific Instrument, 2011, 32(7):1546-1550. [4] 廖东平,姜斌,魏玺章, 等.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. LIAO Dongping, JIANG Bin, WEI Xizhang, et al. Fast learning algorithm with progressive transductive support vector machine[J]. Systems Engineering and Electronics, 2007, 29(1):87-91. [5] 彭新俊,王翼飞.双模糊渐进直推式支持向量机算法[J].模式识别与人工智能,2009,22(4):560-566. PENG Xinjun, WANG Yifei. A bi-fuzzy progressive transductive support vector machine algorithm[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(4):560-566. [6] 薛贞霞,刘三阳,刘万里.改进的直推式支持向量机算法[J].系统工程理论与实践,2009,29(5):142-148. XUE Zhenxia, LIU Sanyang, LIU Wanli. Improved learning algorithm with transductive support vector machines[J]. Systems Engineering Theory and Practice, 2009, 29(5):142-148. [7] 齐芳,冯昕,徐其江.基于人工鱼群优化的直推式支持向量机分类算法[J].计算机应用与软件, 2013,30(3):294-296. QI Fang, FENG Xin, XU Qijiang. Transductive support vector machine classification algorithm based on artificial fish school optimisation[J].Computer Applications and Software, 2013, 30(3):294-296. [8] 丁要军,蔡皖东.采用两阶段策略模型(KTSVM)的P2P流量识别方法[J].西安交通大学学报, 2012,46(2):45-50,129. DING Yaojun, CAI Wandong. P2P traffic identification via k-means based transductive support vetor machine[J]. Journal of Xian Jiaotong University, 2012, 46(2):45-50,129. [9] 艾解清,高济,彭艳斌,等.基于直推式支持向量机的协商决策模型[J].浙江大学学报(工学版),2012,46(6):967-973,994. AI Jieqing, GAO Ji, PENG Yanbin, et al. Negotiation decision model based on transductive support vector machine[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(6):967-973, 994. [10] 杜红乐.基于核空间中K-近邻的不均衡数据算法[J].计算机科学与探索, 2015,9(7):869-876. DU Hongle. Algorithm for imbalanced dataset based on K-nearest neighbor in kernel space[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(7):869-876. [11] 张建明,孙春梅,闫婷.基于自适应SVM的半监督主动学习视频标注[J].计算机工程,2013,39(8):190-195. ZHANG Jianming, SUN Chunmei, YAN Ting. Video annotation for semi-supervised active learning based on adaptive SVM[J]. Computer Engineering, 2013, 39(8):190-195. [12] 金鑫,李玉鉴.不均衡支持向量机的惩罚因子选择方法[J].计算机工程与应用,2011,47(33):129-133. JIN Xin, LI Yujian. Error-cost selection for biased support vector machines[J]. Computer Engineering and Applications, 2011, 47(33):129-133. [13] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. Acm Transactions on Intelligent Systems and Technology, 2011, 2(3):389-396. |
[1] | ZHANG Peng, WANG Su-ge, LI De-yu, WANG Jie. A semi-supervised spam review classification method based on heuristic rules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 44-51. |
[2] | SU Feng-long, XIE Qing-hua, HUANG Qing-quan, QIU Ji-yuan, YUE Zhen-jun. Semi-supervised method for attribute extraction based on transductive learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 111-115. |
[3] | DU Rui-ying, YANG Yong, CHEN Jing, WANG Chi-heng. An efficient network traffic classification scheme based on similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 109-114. |
[4] | CAO Lin-lin1,2, ZHANG Hua-xiang1,2*, WANG Zhi-chao1,2. EB-SVM: support vector machine based data pruning with informatior entropy [J]. J4, 2012, 47(5): 59-62. |
[5] | CHEN Pei-Jian1, YANG Yue-Xiang2, TANG Chuan2. Honesty-rate measuring based distributed intrusion detection system [J]. J4, 2011, 46(9): 77-80. |
[6] | JIANG Jia-tao, LIU Zhi-jie*, XIE Xiao-yao. Based on integrated fuzzy-neural network intrusion detection model [J]. J4, 2011, 46(9): 95-98. |
[7] | ZHANG Ning-xian, GUO Min*, MA Miao. Classification of fruit fly wings vibration sound based on the AR model and SVM [J]. J4, 2011, 46(7): 83-86. |
[8] | SONG Yu-dan, WANG Shi-tong*. Minimum within-class variance SVM with absent features [J]. J4, 2010, 45(7): 102-107. |
[9] | YI Chao-qun, LI Jian-ping, ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM [J]. J4, 2010, 45(7): 119-121. |
[10] | YANG Bing, WANG Shi-tong*. Total margin v minimum class variance support vector machines based on common vectors for noisy face classification [J]. J4, 2010, 45(11): 5-11. |
[11] | LV Liang, YANG Bei, CHEN Zhen-Xiang. Research and design of a network security protection system [J]. J4, 2009, 44(9): 47-51. |
[12] | CAO Hong,DONG Shou-bin,ZHANG Ling . AA SVM multiclassifier based on the weighted threshold strategy [J]. J4, 2006, 41(3): 66-69 . |
[13] | IN Yu-ming,LI You . Chunk parsing for sentences based on SVM [J]. J4, 2006, 41(3): 112-115 . |
|