JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (9): 54-58.doi: 10.6040/j.issn.1671-9352.0.2016.613

Previous Articles     Next Articles

Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces

LU Qiang-de, TAO Shuang-ping*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Guansu, China
  • Received:2016-11-25 Online:2017-09-20 Published:2017-09-15

Abstract: By applying the estimates of the sharp maximal functions. It is proved that the commutators of the Calderón-Zygmund operator and the fractional integral are bounded on a new class of the homogeneous grand variable exponent Lebesgue spaces Lp(·),θ(X) and(~overL)p(·),θ(X), respectively.

Key words: Calderón-Zygmund operator, fractional operator, homogeneous grand variable exponent Lebesgue space, commutator

CLC Number: 

  • O174.2
[1] COIFMAN R R, WEISS G. Analyse harmonique non-commutative sur certain espaces homogenes[M]. Lecture Notes in Mathematics 242. Berlin-New York: Springer-Verlag, 1971.
[2] FAN Dashan, LU Shanzhen, YANG Dachun. Boundedness of operators in Morrey spaces on homogeneous spaces and its applications[J]. Acta Math Sin, Chin Ser, 1997, 42(4):583-590.
[3] PRADOLINI G, SALINAS O. Commutators of singular integrals on spaces of homogeneous type[J]. Czechoslovak Math J, 2007, 57(132):75-93.
[4] BRAMANTI M, CERUTTI M C. Commutators of singular integrals and fractional integrals on homogeneous spaces[J]. Harmonic Analysis and Operator Theory, Contemp Math, 1995, 189:81-94.
[5] BERNARDIS A, HARTZSTEIN S, PRADOLINI G. Weighted inequalities for commutators of fractional integral on spaces of homogeneous type[J]. Math Anal Appl, 2006, 322(1):825-846.
[6] 陶双平, 曹薇. 齐型空间上的弱Morrey-Herz 空间中一类线性算子交换子的有界性[J]. 数学杂志, 2011, 31(1):115-122. TAO Shuangping, CAO Wei. Boundeness of commutators for a class of sublinear operators in weak Morrey-Herz spaces on homogeneous spaces[J]. Journal of Math, 2011, 31(1):115-122.
[7] KOVÁCIK O, RÁKOSNÍK J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Math J, 1991, 41(116):592-618.
[8] HARJULEHTO P, HÄSTÖ P, PERE M. Variable exponent Lebesgue spaces on metric spaces: the Hardy-littlewood maximal operator[J]. Real Anal Exchange, 2004, 30(5):87-103.
[9] CRUZ-URIBE D, FIORENZA A, MARTELL J M. The boundedness of classical operatators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264.
[10] WANG Lijuan, TAO Shuangping. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponent[J]. Turkish J. Math, 2016, 40:122-145.
[11] WANG Lijuan, TAO Shuangping. Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent[J]. J Inequal Appl, 2014, 2014:227.
[12] TAO Shuangping, WANG Lijuan. Littlewood-Paley operators on morrey spaces with variable exponent[J]. Scientific World Journal, 2014, 2014:790671.
[13] KOKILASHVILI V, MESKHI A. Maximal and Calderón-Zygmund operators in grand variable exponent Lebesgue spaces[J]. Georgian Math J, 2014, 21(4):447-461.
[1] ZHAO Huan, ZHOU Jiang. Commutators of multilinear Calderón-Zygmund operator on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 42-50.
[2] YAO Jun-qing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 100-105.
[3] MA Xiao-jie, ZHAO Kai. Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 106-110.
[4] WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18.
[5] WANG Jin-ping, ZHAO Kai. Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 6-10.
[6] GOU Yin-xia, TAO Shuang-ping, DAI Hui-ping. Weighted estimates of fractional integral with rough kernel and its commutators on Herz-type Hardy Spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 80-87.
[7] LI Hao-jing, CHEN Zheng-li*, LIANG Li-li. Note on the Schrdinger uncertainty relation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 67-73.
[8] ZHAO Kai, JI Chun-jing, HUANG Zhi. Boundedness of the commutator of some Marcinkiewicz integral on Herz-type Hardy spaces [J]. J4, 2013, 48(6): 1-4.
[9] YAN Yan-zong, SHAO Xu-kui, WANG Su-ping. Boundedness of Marcinkiewicz integral higher commutators with variable kernels on Hardy spaces [J]. J4, 2013, 48(2): 67-71.
[10] DU Hong-shan, ZHANG Lei*. Lipschitz estimates for commutators of oscillatory integral operators [J]. J4, 2012, 47(4): 80-83.
[11] ZHAO Kai, DONG Peng-juan, SHAO Shuai. Weighted boundedness of commutators of the fractional integral on λ-central Morrey spaces [J]. J4, 2011, 46(12): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!