JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (1): 19-25, 35.doi: 10.6040/j.issn.1671-9352.0.2018.361

• High-end forum • Previous Articles     Next Articles

Ball-milled CaCO3 nanoparticles for removal of Pb2+ in solution

Zhen-yu FENG1(),He-chun JIANG2,*()   

  1. 1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
    2. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
  • Received:2018-07-03 Online:2019-01-20 Published:2019-01-23
  • Contact: He-chun JIANG E-mail:fengzhenyu@sdu.edu.cn;jianghechun@sdu.edu.cn
  • Supported by:
    山东省自然科学基金资助项目(ZR2017PB007);山东大学实验室建设与管理研究项目(sy20183201);山东大学实验室建设与管理研究项目(sy20183205);山东大学实验室建设与管理研究项目(sy20181202);山东省材料化学安全检测技术重点实验室开放课题(2018SDCLHX005)

Abstract:

Nano-sized CaCO3 granules were prepared by ball milling to remove Pb2+ in solution. The results of X-ray diffraction (XRD) clearly indicated that the products after the sorption experiments were composed of CaCO3 and PbCO3. The analysis of selected area electron diffraction (SEAD), transmission electron microscopy (TEM) mapping and scanning electron microscopy (SEM) images demonstrated the generation of PbCO3 nanocrystals and the surface-adsorption of Pb2+ on the CaCO3 adsorbents. The sorption isotherms and kinetics were also considered. All of the results indicated that the main type of interaction between Pb2+ and the as-prepared CaCO3 is dissolution-precipitation accompanied by surface-adsorption.

Key words: calcium carbonate, nanomaterials, lead ion, sorption

CLC Number: 

  • O65

Fig.1

Morphology and structure characterization of CaCO3 before and after ball milling"

Fig.2

Sorption kinetics of nano-sized CaCO3 and micro-sized CaCO3"

Table 1

Sorption kinetics data"

吸附剂 Qe/(mmol·g-1) k2/(g·mmol-1·h-1) R2
纳米级CaCO3 1.902 1.008 0.968
微米级CaCO3 1.893 0.3082 0.851

Fig.3

Sorption isotherms of nano-sized CaCO3 andmicro-sized CaCO3 at 30 ℃"

Table 2

Sorption isotherms data"

吸附剂 T/K Kf/((mmol/g)·(L/mmol)1/n) 1/n R2
纳米级CaCO3 303 5.54 0.060 8 0.996
微米级CaCO3 303 4.93 0.173 0 0.980

Fig.4

Morphology and structure characterization of nano-sized CaCO3 after adsorption test"

Table 3

Difference between metal ion concentrations in initial and equilibrium solutions"

金属离子 Ce-C0/(mmol·L-1)
试样1 试样2 试样3 试样4 试样5
Pb2+ -0.48 -0.82 -0.91 -0.95 -0.95
Ca2+ 0.36 0.63 0.73 0.72 0.75

Fig.5

Electron microscopy and elemental analysis of adsorbent after adsorption experiments"

Fig.6

Dosage of adsorbents used in sorption experiments"

1 ZHANG Bintian , LU Lili , HU Qichang , et al. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+[J]. Biosensors and Bioelectronics, 2014, 56 (1): 243- 249.
2 LI Dandan , ZHOU Dongmei , WANG Peng , et al. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots[J]. Ecotoxicology and Environmental Safety, 2011, 74 (6): 874- 881.
3 SUZUKI Takashi , ISHIGAKI Kyoichi , MIYAKE Michiriro . Synthetic hydroxyapatites as inorganic cation exchangers: part 3. exchange characteristics of lead ion (Pb2+)[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80 (1): 3157- 3165.
4 CHEN Xiaobing , WRIGHT JUDITH V , CONCA JAMES L , et al. Effects of pH on heavy metal sorption on mineral apatite[J]. Environmental Science & Technology, 1997, 31 (3): 624- 631.
5 MICHIHIRO Miyake , KYOICHI Ishigaki , TAKASHI Suzuki . Structure refinements of Pb2+ ion-exchanged apatites by X-ray powder pattern-fitting[J]. Journal of Solid State Chemistry, 1986, 61 (2): 230- 235.
6 TAKEUCHI Yasushi , ARAI Hironori . Removal of coexistiong Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder[J]. Journal of Chemical Engineering of Japan, 1990, 23 (1): 75- 80.
doi: 10.1252/jcej.23.75
7 GODELITSAS A , ASTILLEROS J M , HALLAM K , et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science & Technology, 2003, 37 (5): 3351- 3358.
8 ESALAH J O , WEBER M E , VERA J H . Removal of lead from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate[J]. Separation and Purification Technology, 1999, 18 (1): 25- 36.
doi: 10.1016/S1383-5866(99)00046-5
9 ZHANG Lei , ZENG Yuexian , CHENG Zhengjun . Removal of heavy metal ions using chitosan and modified chitosan: a review[J]. Journal of Molecular Liquids, 2016, 214 (7): 175- 191.
10 AHMED Sultam , CHUGHTAI Shiraz , KEANE MARK A . The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite[J]. Separation and Purification Technology, 1998, 13 (5): 57- 64.
11 MEUNIER Nathalie , BLAIS Jean Francois , TYAGI Rajeshwar Dayal . Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter-current sorption process[J]. Hydrometallurgy, 2004, 73 (5): 225- 235.
12 ZHANG Jing , YAO Bin , PING Hang , et al. Template-free synthesis of hierarchical porous calcium carbonate microspheres for efficient water treatment[J]. RSC Advances, 2016, 6 (11): 472- 480.
13 LIU Zexiang , SHEN Qiuying , ZHANG Qiance , et al. The removal of lead ions of the aqueous solution by calcite with cotton morphology[J]. Journal of Materials Science, 2014, 49 (4): 5334- 5344.
14 YANG Shitong , REN Xxuemei , ZHAO Guixia , et al. Competitive sorption and selective sequence of Cu(Ⅱ) and Ni(Ⅱ) on montmorillonite: Batch, modeling, EPR and XAS studies[J]. Geochimica et Cosmochimica Acta, 2015, 166 (6): 129- 145.
15 UDDIN Mohammad Kashif . A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308 (9): 438- 462.
16 FAKHRE NABIL A , IBRAHIM Bnar . The use of new chemically modified cellulose for heavy metal ion adsorption[J]. Journal of Hazardous Materials, 2018, 343 (9): 324- 331.
17 KINNIBURGH D G , JACKSON M L , SYERS J K . Adsorption of alkaline earth, transiton, and heavy metal cations by hydrous oxide gels of iron and aluminum[J]. Soil Science Society of America Journal, 1976, 40 (9): 796- 799.
18 NGAH W S W , TEONG L C , HANAFIAH M . Adsorption of dyes and heavy metal ions by chitosan composites: a review[J]. Carbohydrate Polymers, 2011, 83 (1): 1446- 1456.
19 MA Xiaoming , LI Liling , YANG Lin , et al. Adsorption of heavy metal ions using hierarchical CaCO3—maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies[J]. Journal of Hazardous Materials, 2012, 209 (11): 467- 477.
20 REED B E. Removal of heavy metals by activated carbon[M]// Environmental Separation of Heavy Metals: Engineering Processes. London: CRC Press, 2002: 168.
21 KADIRVELU K , THAMARAISELVI K , NAMASIVAYAM C . Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 2001, 76 (5): 63- 65.
22 LIU Jia , WANG Hongliang , LV Chunxin , et al. Remove of heavy metals(Cu2+, Pb2+, Zn2+ and Cd2+) in water through modified diatomite[J]. Chemical Research in Chinese Universities, 2013, 29 (3): 445- 448.
doi: 10.1007/s40242-013-2504-1
23 SHENG Guodong , WANG Suowei , HU Jun . Adsorption of Pb(Ⅱ) on diatomite as affected via aqueous solution chemistry and temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339 (2): 159- 166.
24 MAVROPOULOS Elena , ROSSI Alexandre Malta , COSTA ANDRÉA M , et al. Studies on the mechanisms of lead immobilization by hydroxyapatite[J]. Environmental Science & Technology, 2002, 36 (10): 1625- 1629.
25 GARCIA-SÁNCHEZ A , ALVAREZ-AYUSO E . Sorption of Zn, Cd and Cr on calcite: application to purification of industrial wastewaters[J]. Minerals Engineering, 2002, 15 (4): 539- 547.
26 DU Yang , ZHU Lingyan , SHAN Guoqiang . Removal of Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions[J]. Journal of Colloid and Interface Science, 2012, 367 (5): 378- 382.
27 RANGEL-PORRAS G , GARCÍA-MAGNO J B , GONZÁLEZ-MUOZ M P . Lead and cadmium immobilization on calcitic limestone materials[J]. Desalination, 2010, 262 (1): 1- 10.
28 DU Yang , LIAN Fei , ZHU Lingyan . Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells[J]. Environmental Pollution, 2011, 159 (7): 1763- 1768.
doi: 10.1016/j.envpol.2011.04.017
29 CHADA VENKATA G R , HAUSNER DOUGLAS B , STRONGIN DANIEL R. , et al. Divalent Cd and Pb uptake on calcite {101(())4} cleavage faces: An XPS and AFM study[J]. Journal of Colloid and Interface Science, 2005, 288 (4): 350- 360.
30 ELZINGA EERT J , ROUFF ASHAKI A , REEDER RICHARD J . The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study[J]. Geochmica et Cosmochimica Acta, 2006, 70 (2): 2715- 2725.
31 KIM Dong-Seog , PARK Byoung-Yoon . Effects on the removal of Pb2+ from aqueous solution by crab shell[J]. Journal of Chemical Technology and Biotechnology, 2001, 76 (7): 1179- 1184.
32 KONTOYANNIS C G , VAGENAS N V . Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy[J]. Analyst, 2000, 125 (6): 251- 255.
33 BORCHERT H , SHEVCHENKO E V , ROBERT A , et al. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles[J]. Langmuir, 2005, 21 (12): 1931- 1936.
34 PRIETO Manuel , CUBILLAS Pablo , FERNÁNDEZ-GONZALEZÁ Ángeles . Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite[J]. Geochimica et Cosmochimica Acta, 2003, 67 (20): 3859- 3869.
doi: 10.1016/S0016-7037(03)00309-0
35 HO Y S , MCKAY G . The sorption of lead (Ⅱ) on peat[J]. Water Research, 1999, 33 (9): 578- 584.
36 MA Xiaoming , CUI Weigang , YANG Lin , et al. Efficient biosorption of lead(Ⅱ) and cadmium(Ⅱ) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds[J]. Bioresource Technology, 2015, 185 (1): 70- 78.
37 LIU Renlu , GUAN Yong , CHEN Liang , et al. Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3[J]. Frontiers in Microbiology, 2018, 9 (8): 41.
38 MCBRIDE M B . Chemisorption of Cd2+ on calcite surfaces1[J]. Soil Science Society of America Journal, 1980, 44 (1): 26- 28.
doi: 10.2136/sssaj1980.03615995004400010006x
39 ALI IBRAHEEM O , EL-SHEIKH SAID M , SALAMA TAREK M , et al. Controllable synthesis of NaP zeolite and its application in calcium adsorption[J]. Science China Materials, 2015, 58 (8): 621- 633.
doi: 10.1007/s40843-015-0075-9
40 WILLIAMS D B , CARTER C B . Transmission electron microscopy: a textbook for materials science[M]. Berlin: Springer Press, 1996: 575.
[1] LI Chun-rong, MENG Tie-hong. Study on extracting characteristics of trace element in loquat scented tea [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 7-11.
[2] DING Yi1,2. Nanoporous metals: a new class of nanostructured energy materials [J]. J4, 2011, 46(10): 121-133.
[3] CHENG Dan-Dan, XU Chun-Hua, YIN Zhi-Lei, YUE Qin-Yan, WANG Yan. Removal of Cr (VI) from aqueous solutions by nano β-FeOOH [J]. J4, 2010, 45(1): 31-35.
[4] . Pnitroaniline biosorption by a novel exopolysaccharide from the deepsea mesophilic bacterium Wangia profunda (SMA87) [J]. J4, 2009, 44(5): 33-39.
[5] LI Chunling, YUE Qinyan, LI Ying, SUN Daming. Adsorption and desorption of zinc (Ⅱ) and cadmium (Ⅱ) on illite [J]. J4, 2009, 44(11): 6-11.
[6] LI Jing,YUE Qin-yan*,LI Qian,GAO Bao-yu,YUAN Ai-juan . Adsorption of phenol on cationic polymer/bentonite and the mechanism research [J]. J4, 2008, 43(9): 31-35 .
[7] ZHANG Shu-qin,HOU Wan-guo,*,WANG Wen-xing . Sorption removal of p-nitrophenol by uncalcined and calcined Mg2Al layered double hydroxides [J]. J4, 2007, 42(9): 19-24 .
[8] XU Jie,HOU Wan-guo,*,ZHOU Wei-zhi,TAI Pei-dong and WANG Wen-xing . Sorption of lead on meadow brown soil in the northeast of China [J]. J4, 2007, 42(5): 50-54 .
[9] BI Yan-jun,LI Yu-jiang*,GAO Bao-yu,WU Tao and WANG Jing . Adsorption removal of phenol from aqueous solution by calcined hydrotalcitelike compounds [J]. J4, 2007, 42(5): 59-63 .
[10] XIE Jian-kun,YUE Qin-yan*,YU Hui,YUE Wen-wen,LI Ren-bo,ZHANG Sheng-xiao and WANG Xiao-na . Adsorptive properties of sludge activated carbon to Brilliant Red K-2BP [J]. J4, 2007, 42(3): 64-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] HAN Ya-fei, YI Wen-hui, WANG Wen-bo, WANG Yan-ping, WANG Hua-tian*. Soil bacteria diversity in continuous cropping poplar plantation#br# by high throughput sequencing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 1 -6 .
[3] ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28 -35 .
[4] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[5] LI Shou-ju1,SHANGGUAN Zi-chang2,3,SUN Wei4,LUAN Mao-tian1,LIU Bo3. Parameter  inversion  procedure  for  a  nonlinear constitutive  model  of  conditioned  soils[J]. J4, 2010, 45(7): 24 -27 .
[6] ZENG Weng-fu1, HUANG Tian-qiang1,2, LI Kai1, YU YANG-qiang1, GUO Gong-de1,2. A local linear emedding agorithm based on harmonicmean geodesic kernel[J]. J4, 2010, 45(7): 55 -59 .
[7] WANG Bing . Properties of a quasi-claw-free graph[J]. J4, 2007, 42(10): 111 -113 .
[8] LI Shi-long,ZHANG Yun-feng . Error analysis of the rational interpolation based on arithmetic average difference quotient[J]. J4, 2007, 42(10): 106 -110 .
[9] LIANG Xiao, WANG Linshan. Global attractor of a class of recurrent neural network with Stype distributed delays[J]. J4, 2009, 44(4): 57 -60 .
[10] WANG Hong-mei,XIAO Min*,LI Zheng-yi,LI Yu-mei,QIAN Xin-min, . Screening and identification of βgalactosidaseproducing microorganism and enzymatic synthesis of galactooligosaccharides using its transgalactosylation[J]. J4, 2006, 41(1): 133 -139 .