JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (1): 26-35.doi: 10.6040/j.issn.1671-9352.0.2018.387

• High-end forum • Previous Articles     Next Articles

Influence of stand structure of Acer truncatum forest on rainfall redistribution based on modified Gash model

Yi-ran LI(),Rong-hua ZHANG,Ze-dong LI,Yong NIU*(),Yong-tao ZHANG*()   

  1. Forestry College of Shandong Agricultural University, Shandong Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Taishan Forest Eco-station of State Forestry Administration, Tai'an 271018, Shandong, China
  • Received:2018-07-09 Online:2019-01-20 Published:2019-01-23
  • Contact: Yong NIU,Yong-tao ZHANG E-mail:19754328@qq.com;150401973@qq.com;yongtaozhang@126.com
  • Supported by:
    山东省自然科学基金资助项目(ZR2016DB12);泰安市科技发展计划资助项目(20113052)

Abstract:

Canopy interception is the starting point of rainfall distribution in forest ecosystem, and accurate simulation of canopy interception is the basis of exploring forest hydrological process. In order to study the influence of stand density on canopy interception and the adaptability of Gash modified model in stand structure, the Acer truncatum forests with two kinds of forest density in Badaling Forest Park of Beijing were taken as the research object. The simulation analysis of the canopy interception process was carried out, and the adaptability of the Gash correction model was discussed for the stand structural characteristics of the A. truncatum forest. The results showed that: (1) In the growing season of 2013, the measured values of the throughfall, stem flow and canopy interception of A. truncatum forest with the density of 3 665 strain/km2 were 365.5 mm, 38.19 mm and 69.82 mm, and the simulated values by the modified Gash model were 386.45 mm, 33.86 mm and 53.21 mm. Compared with the measured values, the relative errors were 5.73%, 4.33% and 23.80% respectively. The throughfall, stem flow and canopy interception of A. truncatum forest with the density of 1 090 strain/km2 were 380.2 mm, 19.04 mm and 74.25 mm, and the simulated values by the modified Gash model were 368.37 mm, 13.71 mm and 91.43 mm. And the relative errors were 3.12%, 27.99% and 23.13% compared with the measured values. Under the sparse forest conditions, more rainfall penetrated the canopy and entered the next hydrological effect layer of the forest ecosystem. The simulation results of the Gash modified model also showed basically consistent characteristics. The simulation accuracy of the model to the A. truncatum forest can basically meet the needs. (2) Sensitivity analysis of six key parameters in the Gash modified model was carried out, such as the average rainfall intensity (${\bar R}$), the drainage partitioning coefficient (Pt), the canopy storage capacity (S), the canopy cover fraction per unit area (c), the trunks storage capacity (St), the average saturated canopy evaporation rate(${\bar E}$). The influence of the six parameters on the A. truncatum forest with high density was R > S > E > St > c > Pt. And it was S > R > E > C > St > Pt on the A. truncatum forest with low density. It can be concluded from the analysis that it is the key to improve the simulation accuracy of the modified Gash model by selecting the appropriate time scale to calculate the average rainfall intensity and the canopy storage capacity. Proper thinning can provide better water conditions for stand growth.

Key words: modified Gash model, canopy interception, forest density, Acer truncatum, sensitivity analysis

CLC Number: 

  • S715.2

Fig.1

Characteristic frequency distribution of rainfall during the study period"

Fig.2

Relationship between rainfall and throughfall in Acer truncatum with different densities"

Fig.3

Relationship between rainfall and stem flow in Acer truncatum forests with different densities"

Table 1

The measured values of Acer truncatum forests with different densities andthe simulated values of modified Gash Model"

模型组成部分 元宝槭密林(3 660株/hm2) 元宝槭疏林(1 090株/hm2)
实测值/mm 模拟值/mm 实测值/mm 模拟值/mm
m次林冠未达到饱和状态时的降雨量/mm / 2.40 / 4.84
n次林冠达到饱和状态的林冠加湿过程/mm / 0.67 / 2.22
降雨终止前饱和状态林冠的蒸发散/mm / 20.49 / 17.26
降雨停止后的林冠蒸发散/mm / 21.17 / 66.95
q次树干达到饱和时的蒸发散/mm / 8.06 / 0.16
n-q次树干未达到饱和状态时的降雨量/mm / 0.42 / 0.00
林冠截留量/mm 69.8 53.21 74.3 91.43
树干茎流量/mm 38.2 33.86 19.0 13.71
穿透雨量/mm 365.5 386.45 380.2 368.37

Fig.4

Sensitivity analysis of Gash modified model parameters of Acer truncatum forest with high stand density(left) or low stand density(right)"

1 魏曦, 毕华兴, 梁文俊. 基于Gash模型对华北落叶松和油松人工林冠层截留的模拟[J]. 中国水土保持科学, 2017, 15 (6): 27- 33.
WEI Xi , BI Huaxing , LIANG Wenjun . Canopy interception simulation of Larix principis-rupprechtii and Pinus tabulaeformis forests in northern China based on Gash model[J]. Science of Soil and Water Conservation, 2017, 15 (6): 27- 33.
2 高婵婵, 彭焕华, 赵传燕, 等. 基于Gash模型的青海云杉林降水截留模拟[J]. 生态学杂志, 2015, 34 (1): 288- 294.
GAO Chanchan , PENG Huanhua , ZHAO Chuanyan , et al. Simulation of rainfall interception of Qinghai spruce (Picea crassifolia) forest in the eastern part of Qilian Mountains by Gash model[J]. Chinese Journal of Ecology, 2015, 34 (1): 288- 294.
3 赵海蓉, 帅伟, 李静, 等. 华西雨屏区几种典型人工林降雨截留分配特征[J]. 水土保持学报, 2014, 28 (6): 94- 100.
ZHAO Hairong , SHUAI Wei , LI Jing , et al. Distribution characteristics of several typical plantation intercept rainfall in West China rain screen area[J]. Journal of Soil and Water Conservation, 2014, 28 (6): 94- 100.
4 何常清, 薛建辉, 吴永波, 等. 应用修正的Gash解析模型对岷江上游亚高山川滇高山栎林林冠截留的模拟[J]. 生态学报, 2010, 30 (5): 1125- 1132.
HE Changqing , XUE Jianhui , WU Yongbo , et al. Application of a revised Gash analytical model to simulate subalpine Quercus aquifolioides forest canopy interception in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2010, 30 (5): 1125- 1132.
5 MUZYLO A , LLORENS P , VALENTE F , et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370 (1): 191- 206.
6 GASH J H C . An analytical model of rainfall interception in forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105 (443): 43- 55.
doi: 10.1002/(ISSN)1477-870X
7 GASH J H C , LLOYD C R , LACHAUD G . Estimation sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170 (1): 78- 86.
8 LIMOUSIN J M , RAMBAL S , OURCIVAL J M , et al. Modelling rainfall interception in a mediterranean Quercus ilex, ecosystem: lesson from a throughfall exclusion experiment[J]. Journal of Hydrology, 2008, 357 (1/2): 57- 66.
9 曹光秀, 赵洋毅, 段旭, 等. 基于修正的Gash模型模拟中亚热带常绿阔叶林降雨截留过程[J]. 水土保持学报, 2018, 32 (2): 364- 371.
CAO Guangxiu , ZHAO Yangyi , DUAN Xu , et al. Simulation of canopy rainfall interception of the Evergreen Broad-leaver forest in mid subtropical zone using the modified Gash model[J]. Journal of Soil and Water Conservation, 2018, 32 (2): 364- 371.
10 刘胜涛, 高鹏, 李肖, 等. 江西大岗山杉木人工林降雨截留特征及修正Gash模型的模拟[J]. 水土保持学报, 2015, 29 (2): 172- 176.
LIU Shengtao , GAO Peng , LI Xiao , et al. Canopy rainfall interception characteristics of Chinese Fir forest and its revised Gash model simulation in Dagangshan Mountain of Jiangxi province[J]. Journal of Soil and Water Conservation, 2015, 29 (2): 172- 176.
11 柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33 (4): 1276- 1284.
CHAI Rushan , CAI Tijiu , MAN Xiuling , et al. Simulation of rainfall interception process of primary korean pine forest in Xiaoxing'an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33 (4): 1276- 1284.
12 王艳萍, 王力, 卫三平. Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J]. 生态学报, 2012, 32 (17): 5445- 5453.
WANG Yanping , WANG Li , WEI Sanping . Modeling canopy rainfall interception of a replanted Robinia pseudoacacia forest in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32 (17): 5445- 5453.
13 赵洋毅, 王玉杰, 王云琦, 等. 基于修正的Gash模型模拟缙云山毛竹林降雨截留[J]. 林业科学, 2011, 47 (9): 15- 20.
ZHAO Yangyi , WANG Yujie , WANG Yunqi , et al. Simulation of canopy rainfall interception of the Phyllostachys edulis forest with the revised Gash model in the Jinyun Mountains of Chongqing[J]. Scientia Silvae Sinicae, 2011, 47 (9): 15- 20.
14 SHINOHARA Y , LEVIA D F , KOMATSU H , et al. Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica, D. Don) forest of western Japan[J]. Agricultural & Forest Meteorology, 2015, 214/215: 148- 156.
15 GHIMIRE C P , BRUIJNZEEL L A , LUBCZYNSKI M W , et al. Measurement and modelling of rainfall interception by two differently aged secondary forests in upland Eastern Madagascar[J]. Journal of Hydrology, 2017, 545: 212- 225.
doi: 10.1016/j.jhydrol.2016.10.032
16 FATHIZADEH O , HOSSEINI S M , KEIM R F , et al. A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands[J]. Forest Ecology & Management, 2018, 409: 601- 613.
17 CARLE-MOSESA D E , PRICEB A G . An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology, 1999, 214 (1/2/3/4): 103- 110.
18 万艳芳, 刘贤德, 王顺利, 等. 祁连山青海云杉林冠降雨再分配特征及影响因素[J]. 水土保持学报, 2016, 30 (5): 224- 229.
WAN Yanfang , LIU Xiande , WANG Shunli , et al. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qianlian Mountains[J]. Journal of Soil and Water Conservation, 2016, 30 (5): 224- 229.
19 隋媛媛, 许晓鸿, 张瑜, 等. 东北黑土区水土保持林降雨截留特征分析[J]. 草业学报, 2015, 24 (6): 16- 24.
SUI Yuanyuan , XU Xiaohong , ZHANG Yu , et al. Characteristics of precipitation interception in soil and water conservation forests of the Northeast black soil areas of China[J]. Acta Prataculturae Sinica, 2015, 24 (6): 16- 24.
20 盛后财, 蔡体久, 李奕, 等. 大兴安岭北部兴安落叶松林降雨截留再分配特征[J]. 水土保持学报, 2014, 28 (6): 101- 105.
SHENG Houcai , CAI Tijiu , LI Yi , et al. Rainfall redistribution in Larix gmelinii forest on Northern of Daxing'an Moutains, northeast of China[J]. Journal of Soil and Water Conservation, 2014, 28 (6): 101- 105.
21 LIU S . Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North Central Florida[J]. Journal of Hydrology, 1998, 207 (1/2): 32- 41.
22 芦新建, 贺康宁, 王辉, 等. 应用Gash模型对青海高寒区华北落叶松人工林林冠截留的模拟[J]. 水土保持学报, 2014, 28 (4): 44- 48.
LU Xinjian , HE Kangning , WANG Hui , et al. Simulation of canopy rainfall interception of the Larix principis-rupprechtii artificial forest with the Gash model in High-cold areas of Qinghai province[J]. Journal of Soil and Water Conservation, 2014, 28 (4): 44- 48.
23 田野宏, 满秀玲, 刘茜, 等. 大兴安岭北部白桦次生林降雨再分配特征研究[J]. 水土保持学报, 2014, 28 (3): 109- 113.
TIAN Yehong , MAN Xiuling , LIU Qian , et al. Research on rainfall redistribution of Betula platyphylla secondary forests in north of greater Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2014, 28 (3): 109- 113.
24 时忠杰, 王彦辉, 徐丽宏, 等. 六盘山华山松(Pinus armandii)林降雨再分配及其空间变异特征[J]. 生态学报, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010
SHI Zhongjie , WANG Yanhui , XU Lihong , et al. Rainfall redistribution and its spatial variation in the stand of Pinus armandii in the Liupan Mountains, China[J]. Acta Ecologica Sinica, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010
25 曾伟, 熊彩云, 肖复明, 等. 不同密度退耕雷竹春季林冠截留特性[J]. 生态学杂志, 2014, 33 (5): 1178- 1182.
ZENG Wei , XIONG Caiyun , XIAO Fuming , et al. Spring canopy interception characteristics of Phyllostachys praecox cv. Prevernalis stand converted from cropland at different densities[J]. Chinese Journal of Ecology, 2014, 33 (5): 1178- 1182.
26 张晓蓓.宁夏六盘山南侧华北落叶松人工林生态水文影响的密度效应评价[D].保定:河北农业大学, 2012.
ZHANG Xiaopei. Ecohydrological impact assessment among Larix principis-rupprechii plantation with different densities at south part of Liupan Mountains in Ningxia[D]. Baoding: Agricultural University of Hebei, 2012.
27 刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35 (11): 3118- 3125.
LIU Xiaodong , LONG Fengling , CHEN Xiuzhi , et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35 (11): 3118- 3125.
28 刘玉杰, 满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40 (4): 81- 88.
LIU Yujie , MAN Xiuling . Simulation of canopy rainfall interception of the Larix gmelinii forest by the modified Gash model in Greater Hinggan Mountains[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (4): 81- 88.
[1] ZHANG Xin, MA Jian-hua*, LIU Pei-de, LIU Qiang, XU Feng. Evaluation method and application of the integration level of  regional industrialization and information [J]. J4, 2012, 47(3): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[3] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[4] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[5] REN Min1,2, ZHANG Guang-hui1. Absorbing probabilities of random walks in an independent random  environment convergence in distribution on the half-line[J]. J4, 2013, 48(1): 93 -99 .
[6] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[7] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[8] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[9] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[10] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .