JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (1): 36-46.doi: 10.6040/j.issn.1671-9352.3.2018.385

• High-end forum • Previous Articles     Next Articles

Effects of successive-planting poplar plantation on soil microbial community

Ying ZHANG(),Xue-song MA,Ru-yan JING,Feng-yun MA,Jian-yao GUO,Yan-ping WANG,Hua-tian WANG*()   

  1. Key Laboratory of Silviculture in Shandong, Forestry College of Shandong Agricultural University, Taian 271018, Shandong, China
  • Received:2018-07-10 Online:2019-01-20 Published:2019-01-23
  • Contact: Hua-tian WANG E-mail:cherrycedar@163.com;sdwht@sdau.edu.cn
  • Supported by:
    国家自然科学基金资助项目(31270670);国家自然科学基金资助项目(31070550);国家重点基础研究发展计划资助项目(2012CB416904/zgc)

Abstract:

The metagenome sequencing was used to analyze the changes of microbial community between the first and the second continuous cropping of poplar plantations for understanding the effect of successive-planting on soil microbial community, meanwhile the content of phenolic acid in soil was analyzed. The results showed that there were no significant differences in soil microbial community diversity and uniformity while significant differences (P < 0.05) were found in the composition and abundance of microbial community after successive-planting of poplar plantation. Microorganisms from eight categories and sixty-three genera were found with Bacillus being the dominant. The continuous cropping had significant effects on soil microbial community composition and abundance in poplar plantations. The relative abundance of nine genera microbes was significantly increased(P < 0.05) and the relative abundance of seven genera was significantly decreased (P < 0.05) in the soil of second generation forest. The relative abundance of genes related to metabolism such as DNA repair and protein recombination, secondary metabolites biosynthesis, transport and catabolism was decreased. The total content of phenolic acids in soil was significantly increased (P < 0.05), and there was a general correlation between the variation of microbial diversity and phenolic acid content.

Key words: poplar plantation, successive-planting, metagenome sequencing, microbes, phenolic acid

CLC Number: 

  • S718.8

Table 1

Main soil factors of poplar plantation"

土样 pH 有机质含量/(mg·g-1) 全磷含量/(mg·g-1) 有效磷含量/(μg·g-1) 有效钾含量/(μg·g-1) 有效氮含量/(mg·g-1)
P1 6.17±0.01b 12.18±0.78b 0.10±0.15c 25.56±1.42a 78.36±2.07b 40.65±1.04b
P2 6.12±0.01c 15.42±1.38a 0.14±0.01ab 22.84±1.19a 75.89±4.42b 40.14±2.71b

Fig.1

Microbial diversity index of poplar plantation"

Fig.2

Principal component analysis (PCA) two-dimensional sort chart of microbial communities"

Table 2

Changes in relative abundance of the microorganisms at the phyla and genera level of poplar plantation"

分类 相对丰度
Ⅰ代林P1 Ⅱ代林P2
厚壁菌门Firmicutes 62.42±1.22a 63.28±1.25a
芽孢杆菌属Bacillus 62.09±1.22a 62.78±1.09a
杆菌属Lysinibacillus 0.01±0.00a 0.00±0.00b
类芽孢杆菌属Paenibacillus 0.00±0.00b 0.01±0.01a
明串球菌属Leuconostoc 0.03±0.01a 0.04±0.03a
链球菌属Streptococcus 0.24±0.03a 0.36±0.13a
乳球菌属Lactococcus 0.06±0.02a 0.09±0.01a
变形菌门Proteobacteria 19.69±0.72a 19.31±0.41a
假单胞菌属Pseudomonas 5.37±0.07b 5.58±0.05a
不动杆菌属Acinetobacter 0.48±0.16a 0.41±0.12a
水栖菌属Enhydrobacter 0.66±0.10a 0.73±0.10a
Thioalkalivibrio 0.47±0.18a 0.22±0.07a
柄杆菌属Caulobacter 0.06±0.04a 0.04±0.01a
军团菌属Legionella 0.08±0.01a 0.04±0.01b
寡养单胞菌属Stenotrophomonas 0.07±0.01a 0.04±0.01a
亚硝化螺菌属Nitrosospira 0.02±0.01a 0.04±0.01a
堆囊菌属Sorangium 0.01±0.00a 0.04±0.02a
Desulfobulbaceae_unclassified 0.00±0.00b 0.02±0.01a
泛生菌属Pantoea 0.01±0.01a 0.00±0.00b
苯基杆菌属Phenylobacterium 0.04±0.01a 0.01±0.01a
Aurantimonadaceae_unclassified 0.19±0.06a 0.10±0.01a
Beijerinckiaceae_unclassified 0.36±0.01a 0.36±0.05a
慢生根瘤菌属Bradyrhizobium 0.68±0.10b 1.06±0.03a
阿菲波菌属Afipia 0.05±0.01a 0.05±0.03a
红假单胞菌属Rhodopseudomonas 1.10±0.20b 2.01±0.10a
硝化菌属Nitrobacter 0.13±0.02a 0.11±0.02a
甲基杆菌属Methylobacterium 0.57±0.11a 0.69±0.21a
Methylocystaceae_unclassified 1.85±0.39a 1.75±0.54a
中慢生根瘤菌属Mesorhizobium 0.26±0.08a 0.31±0.16a
根瘤菌属Rhizobium 0.05±0.02b 0.12±0.02a
Xanthobacteraceae_unclassified 0.09±0.02a 0.08±0.05a
Acetobacteraceae_unclassified 1.01±0.01a 0.67±0.04b
Erythrobacteraceae_unclassified 0.02±0.01a 0.00±0.00b
波氏杆菌属Bordetella 0.06±0.01a 0.04±0.01b
鞘脂单胞菌属Sphingopyxis 0.04±0.02a 0.00±0.00b
伯克氏菌属Burkholderia 5.54±0.79a 4.61±0.24a
贪噬菌属Variovorax 0.16±0.06a 0.16±0.05a
罗尔斯通菌属Ralstonia 0.04±0.01a 0.02±0.01a
贪铜菌属Cupriavidus 0.24±0.06a 0.00±0.00b
放线菌门Actinobacteria 13.62±0.27a 13.07±0.52a
Micromonosporaceae_unclassified 3.96±0.63a 3.22±0.21b
Catenulispora 0.27±0.05a 0.50±0.03a
弗兰克氏菌属Frankia 0.23±0.04b 0.47±0.04a
地嗜皮菌属Geodermatophilus 0.05±0.02a 0.04±0.02a
赖氏菌属Leifsonia 0.02±0.01a 0.01±0.01a
小单孢菌属Micromonospora 0.07±0.02a 0.01±0.01b
节细菌属Arthrobacter 1.06±0.06b 1.69±0.08a
盐孢菌属Salinispora 0.002±0.001a 0.00±0.000b
分歧杆菌属Mycobacterium 7.07±0.07a 5.70±0.14b
Nakamurella 0.00±0.00b 0.02±0.01a
Kribbella 0.03±0.01a 0.04±0.01a
类诺卡氏菌属Nocardioides 0.004±0.001a 0.00±0.000b
丙酸杆菌属Propionibacterium 0.01±0.01a 0.00±0.00b
拟无枝酸菌属Amycolatopsis 0.27±0.11b 0.72±0.16a
链霉菌属Streptomyces 0.41±0.10a 0.58±0.13a
链孢子囊菌属Streptosporangium 0.09±0.04a 0.00±0.00b
双歧杆菌属Bifidobacterium 0.01±0.01a 0.00±0.00b
Conexibacter 0.06±0.04a 0.08±0.04a
酸杆菌门Acidobacteri 1.88±0.53a 1.31±0.44a
Granulicella 1.88±0.53a 1.31±0.44a
Korebacter 0.01±0.01a 0.00±0.00b
拟杆菌门Bacteroidetes 1.49±0.41a 2.01±0.20a
Sphingobacteriaceae_unclassified 1.43±0.42a 1.84±0.19a
黄杆菌属Flavobacterium 0.07±0.02b 0.17±0.04a
绿弯菌门Chloroflexi 0.51±0.02b 0.84±0.01a
纤线杆菌属Ktedonobacter 0.06±0.02b 0.16±0.01a
疣微菌门Verrucomicrobia 0.37±0.05a 0.19±0.03b
Chthoniobacter 0.36±0.05a 0.19±0.03b
丰佑菌属Opitutus 0.01±0.00a 0.00±0.00b
浮霉菌门Planctomycetes 0.01±0.01a 0.01±0.01a
出芽菌属Gemmata 0.01±0.01a 0.01±0.01a

Fig.3

Relative abundance of eggNOG annotation results in different soil samples"

Fig.4

Relative abundance of annotation results in the second level of KEGG metabolic pathway in different soil samples"

Fig.5

Relative abundance of annotation results in the third level of KEGG metabolic pathway in different soil sample"

Table 3

Prediction of soil microbial genes in poplar plantation"

土样 编码蛋白数(106) KEGG同源基因数 eggNOG同源基因数
P1 4.70±0.16a 6 534±112a 43 580±219a
P2 4.58±0.16ab 6 520±58a 43 182±576a

Table 4

Changes among different soil samples in content of phenolic acids"

土样 对羟基苯甲酸 香草醛 阿魏酸 苯甲酸 肉桂酸 总量
P1 13.31±0.03b 3.16±0.01a 5.89±0.33a 6.73±0.15b 0.53±0.02b 29.63±0.23b
P2 15.93±0.14a 2.12±0.09b 5.11±0.18b 7.15±0.15a 0.81±0.07a 31.12±0.03a

Table 5

Correlation coefficients among soil microbes and phenolic conte"

对羟基苯甲酸 香草醛 阿魏酸 苯甲酸 肉桂酸 酚酸总量
假单胞菌属Pseudomonas 0.92* -0.92** -0.82* 0.78 0.87* 0.87*
红假单胞菌属Rhodopseudomonas 0.97** -0.96** -0.74 0.75 0.94** 0.99**
节细菌属Arthrobacter 0.98** -0.97** -0.87* 0.88* 0.97** 0.97**
慢生根瘤菌属Bradyrhizobium 0.96** -0.95** -0.76 0.77 0.94** 0.98**
拟无枝酸菌属Amycolatopsis 0.91* -0.91* -0.64 0.63 0.83* 0.93**
弗兰克氏菌属Frankia 0.96** -0.97** -0.91** 0.88* 0.90* 0.92**
根瘤菌属Rhizobium 0.92* -0.91* -0.76 0.78 0.92** 0.94**
黄杆菌属Flavobacterium 0.87* -0.87* -0.82* 0.82* 0.88* 0.86*
纤线杆菌属Ktedonobacter 0.97** -0.98** -0.89* 0.86* 0.88* 0.93**
分歧杆菌属Mycobacterium -0.99** 0.99** 0.86* -0.84* -0.93** -0.97**
Micromonosporaceae_unclassified -0.94** 0.94** 0.80 -0.76 -0.82* -0.97**
Acetobacteraceae_unclassified -0.99** 0.99** 0.85* -0.83* -0.93** -0.98**
Chthoniobacter -0.93** 0.92** 0.75 -0.76 -0.92** -0.95**
小单孢菌属Micromonospora -0.87* 0.87* 0.99** -0.97** -0.86* -0.80
军团菌属Legionella -0.89* 0.88* 0.86* -0.88* -0.94** -0.89*
波氏杆菌属Bordetella -0.96** 0.95** 0.95** -0.94** -0.94** -0.92*
1 时鹏, 高强, 王淑平, 等. 玉米连作及其施肥对土壤微生物群落功能多样性的影响[J]. 生态学报, 2010, 30 (22): 6173- 6182.
SHI Peng , GAO Qiang , WANG Shuping , et al. Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity[J]. Acta Ecologica Sinica, 2010, 30 (22): 6173- 6182.
2 NAVARRETEA A , TSAI S M , MENDES L W , et al. Soil microbiome responses to the short-term effects of Amazonian deforestation[J]. Molecular Ecology, 2015, 24 (10): 2433- 2448.
doi: 10.1111/mec.13172
3 雍太文, 杨文钰, 向达兵, 等. 不同种植模式对作物根系生长、产量及根际土壤微生物数量的影响[J]. 应用生态学报, 2012, 23 (1): 125- 132.
YONG Taiwen , YANG Wenyu , XIANG Dabing , et al. Effects of different cropping modes on crop root growth, yield, and rhizosphere soil microbes'number[J]. Chinese Journal of Applied Ecology, 2012, 23 (1): 125- 132.
4 STEENWERTHS K L , JACKON L E , CALDERON F J , et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California[J]. Soil Biology and Biochemistry, 2003, 35 (3): 489- 500.
doi: 10.1016/S0038-0717(03)00028-2
5 许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20 (3): 491- 498.
XU Tan , WANG Huatian , WANG Yanping , et al. Correlation between soil nutrient availability and bacteria community succession in poplar plantations[J]. Chinese Journal of Applied Environment Biology, 2014, 20 (3): 491- 498.
6 田柳, 任桂芳, 李永, 等. 北京市杨树人工林微生物区系分析[J]. 林业科学, 2010, 46 (3): 80- 88.
TIAN Liu , REN Guifang , LI Yong , et al. Investigation on microflora of poplar plantations in Beijing[J]. Scientia Silvae Sincae, 2010, 46 (3): 80- 88.
7 王延平, 王华田, 许坛, 等. 酚酸对杨树人工林土壤养分有效性及酶活性的影响[J]. 应用生态学报, 2013, 24 (3): 667- 673.
WANG Yanping , WANG Huatian , XU Tan , et al. Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation[J]. Chinese Journal of Applied Ecology, 2013, 24 (3): 667- 673.
8 王华田, 王延平. 关于连作人工林衰退机理几个热点问题的探讨[J]. 山东大学学报(理学版), 2013, 48 (7): 1- 8.
WANG Huatian , WANG Yanping . Hotspot discussion on decline mechanism of replanted plantation[J]. Journal of Shandong University(Natural Science), 2013, 48 (7): 1- 8.
9 TREUSCH A H , KLETZIN A , RADDATZ G , et al. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea[J]. Environmental Microbiology, 2004, 6 (9): 970- 980.
doi: 10.1111/emi.2004.6.issue-9
10 FIERER N , LEFFJ W , ADAMS B J , et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences, 2012, 109 (52): 21390- 21395.
doi: 10.1073/pnas.1215210110
11 王友保. 土壤污染与生态修复实验指导[M]. 合肥: 安徽师范大学出版社, 2015: 2- 3.
WANG Youbao . Experiment guidance of soil pollution and ecological restoration[M]. Hefei: Anhui Normal University Press, 2015: 2- 3.
12 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 16- 17.
BAO Shidan . Analysis of soil agrochemical[M]. Beijing: China Agricultural Press, 2000: 16- 17.
13 谭秀梅, 王华田, 孔令刚, 等. 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J]. 山东大学学报(理学版), 2008, 43 (1): 14- 19.
TAN Xiumei , WANG Huatian , KONG Linggang , et al. Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes[J]. Journal of Shandong University(Natural Science), 2008, 43 (1): 14- 19.
14 LI C , LI X , KONG W , et al. Effect of monoculture soybean on soil microbial community in the Northeast China[J]. Plant Soil, 2010, 330: 423- 433.
doi: 10.1007/s11104-009-0216-6
15 WU X , ZHAO Q , ZHAO J , et al. Different continuous cropping spans significantly affect microbial community membership and structure in a Vanilla-grown soil as revealed by deep pyrosequencing[J]. Microbial Ecology, 2015, 70 (1): 209- 218.
doi: 10.1007/s00248-014-0516-0
16 KOWALCHUK G A , BUMA D S , DE B W , et al. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms[J]. Antonie van Leeuwenhoek, 2002, 81 (1/2/3/4): 509- 520.
17 LEI Juanli , ZHOU Yanhong , DING Ju , et al. Effct of continuous cropping of different vegetables on DNA polymorphorism of soil bacterial[J]. Scientia Agricultura Sinica, 2005, 38 (10): 2076- 2083.
18 张伟, 陈一峰. 棉花长期连作对新疆土壤细菌群落结构的影响[J]. 生态学报, 2014, 34 (16): 4682- 4689.
ZHANG Wei , CHEN Yifeng . Analysis of the bacterial communities in continuous cotton fields of Xinjiang Province[J]. Acta Eclogica Sinica, 2014, 34 (16): 4682- 4689.
19 杜茜, 卢迪, 马琨. 马铃薯连作对土壤微生物群落结构和功能的影响[J]. 生态环境学报, 2012, 21 (7): 1252- 1256.
DU Qian , LU Di , MA Kun . Effect of potato continuous cropping on soil microbial community structure and function[J]. Ecology and Environmental Sciences, 2012, 21 (7): 1252- 1256.
20 岳冰冰, 李鑫, 张会慧, 等. 连作对黑龙江烤烟土壤微生物功能多样性的影响[J]. 土壤, 2013, 45 (1): 116- 119.
YUE Bingbing , LI Xin , ZHANG Huihui , et al. Soil microbial diversity and community structure under continuous tobacco cropping[J]. Soils, 2013, 45 (1): 116- 119.
21 纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53 (1): 241- 252.
NA Xiaofan , ZHEN Guoqi , PENG Li , et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history[J]. Acta Pedologica Sinica, 2016, 53 (1): 241- 252.
22 刘丽, 徐明恺, 汪思龙, 等. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J]. 生态学报, 2013, 33 (15): 4692- 4706.
LIU Li , XU Mingkai , WANG Silong , et al. Effect of different cunninghamia lanceolata plantation soil qualities on soil microbial community structure[J]. Acta Eclogica Sinica, 2013, 33 (15): 4692- 4706.
23 韩亚飞, 伊文慧, 王文波, 等. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49 (5): 1- 6.
doi: 10.6040/j.issn.1671-9352.0.2014.081
HAN Yafei , YIN Wenhui , WANG Wenbo , et al. Soil bacteria diversity in continuous cropping poplar plantation by high throughput sequencing[J]. Journal of Shandong University (Natural Science), 2014, 49 (5): 1- 6.
doi: 10.6040/j.issn.1671-9352.0.2014.081
24 王文波, 王延平, 王华田, 等. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响[J]. 林业科学, 2016, 52 (5): 45- 54.
WANG Wenbo , WANG Yanping , WANG Huatian , et al. Effects of different continuous cropping and rotation of poplar plantation on soil nitrogen bacteria community and nitrogen metabolism[J]. Scientia Silvae Sinicae, 2016, 52 (5): 45- 54.
25 王文波, 马雪松, 董玉峰, 等. 杨树人工林连作与轮作酚酸降解细菌群落特征及酚酸降解代谢分析[J]. 应用与环境生物学报, 2016, 22 (5): 1- 14.
WANG Wenbo , MA Xuesong , DONG Yufeng , et al. Community characteristics and degradation metabolism regulation of soil phenolic acid degrading bacteria in poplar plantations under continuous cropping and crop rotation[J]. Chinese Journal of Applied Environmental Biology, 2016, 22 (5): 1- 14.
26 马雪松, 王文波, 王延平, 等. 杨树人工林连作与轮作对土壤解磷微生物类群的影响[J]. 应用生态学报, 2016, 27 (6): 1877- 1885.
MA Xuesong , WANG Wenbo , WANG Yanping , et al. Characteristics of phosphate-solubilizing microbial community in the soil of poplar plantations under successive-planting and rotation[J]. Chinese Journal of Applied Ecology, 2016, 27 (6): 1877- 1885.
27 李稹, 黄娟, 姜磊, 等. 人工湿地植物根系分泌物与根际微环境相关性的研究进展[J]. 安全与环境学报, 2012, 12 (5): 41- 45.
doi: 10.3969/j.issn.1009-6094.2012.05.009
LI Zhen , HUANG Juan , QIANG Lei , et al. Factors affecting the dye sewage decolorization by fungi in open-air conditions[J]. Journal of Safety and Environment, 2012, 12 (5): 41- 45.
doi: 10.3969/j.issn.1009-6094.2012.05.009
28 LIAO M , XIE X . Effects of combination of plant and microorganism on degradation of simazine in soil[J]. Journal of Environmental Sciences, 2008, 20 (2): 195- 198.
doi: 10.1016/S1001-0742(08)60031-5
29 李潞滨, 刘敏, 杨淑贞, 等. 毛竹根际可培养微生物种群多样性分析[J]. 微生物学报, 2008, 48 (6): 772- 779.
doi: 10.3321/j.issn:0001-6209.2008.06.011
LI Lubin , LIU Min , YANG Shuzhen , et al. Cultivable microbial diversity at the rhizosphere of Phyllostachys pubescens[J]. Acta Microbiologica Sinica, 2008, 48 (6): 772- 779.
doi: 10.3321/j.issn:0001-6209.2008.06.011
30 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38 (3): 298- 310.
WU Linkun , LIN Xiangmin , LIN Wenxiong . Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38 (3): 298- 310.
31 张艳群, 来航线, 韦小敏, 等. 生物肥料多功能芽孢杆菌的筛选及其作用机理研究[J]. 植物营养与肥料学报, 2013, 19 (2): 489- 497.
ZHANG Yanqun , LAI Hangxian , WEI Xiaomin , et al. Selection of multifunctional bacillus strains of biological fertilizer and the study of their mechanisms on plant growth[J]. Plant Nutrition and Fertilizer Science, 2013, 19 (2): 489- 497.
32 张霞, 唐文华, 张力群. 枯草芽抱杆菌B931防治植物病害和促进植物生长的作用[J]. 作物学报, 2007, 33 (2): 236- 241.
doi: 10.3321/j.issn:0496-3490.2007.02.010
ZHANG Xia , TANG Wenhua , ZHANG Liqun . Biological control of plant disease and growth promotion by Bacillus subtilis B931[J]. Acta Agronmica Sinica, 2007, 33 (2): 236- 241.
doi: 10.3321/j.issn:0496-3490.2007.02.010
33 MENDES R , KRUIJT M , de BRUIJN I , et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332 (6033): 1097- 1100.
doi: 10.1126/science.1203980
34 李吉.怀牛膝连作对根际土壤微生物群落结构和功能多样性的影响[D].福州:福建农林大学, 2013.
LI Ji. Analysis of physicochemical properties and microbial diversity in rhizosphere soil of Achyranthes bidentata under different cropping years[D]. Fuzhou, Fujian Agriculture and Forestry University, 2013.
35 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析[J]. 中国农业科学, 2007, 40 (10): 2267- 2273.
doi: 10.3321/j.issn:0578-1752.2007.10.020
HU Yuansen , WU Kun , LI Cuixiang , et al. Effect of continuous cropping of cucumber on soil microbial populationⅡ——variation analysis based on DGGE approach[J]. Scientia Agricultura Sinica, 2007, 40 (10): 2267- 2273.
doi: 10.3321/j.issn:0578-1752.2007.10.020
36 RENELLA G , EGAMBERDYEVA D , LANDI L , et al. Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils[J]. Soil Biology and Biochemistry, 2006, 38: 702- 708.
doi: 10.1016/j.soilbio.2005.06.021
37 KONG C H , WANG P , GU Y , et al. Fate and impact on microorganisms of rice allelochemicals in paddy soil[J]. Journal of Agricultural and Food Chemistry, 2008, 56 (13): 5043- 5049.
doi: 10.1021/jf8004096
38 BADRI D V , VIVANCO J M . Regulation and function of root exudates[J]. Plant Cell and Environment, 2009, 32 (6): 666- 681.
doi: 10.1111/pce.2009.32.issue-6
39 HARTMANN A , SCHMID M , TUINEN D , et al. Plant-driven selection of microbes[J]. Plant and Soil, 2009, 321 (1): 235- 257.
40 BLUM U , SHAFER S R . Microbial population and phenoic acids in soil[J]. Soil Biology and Biochemistry, 1988, 20 (6): 793- 800.
doi: 10.1016/0038-0717(88)90084-3
41 CHAPARRO J M , BADRI D V , BAKKER M G , et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. Plos One, 2013, 8 (2): 525- 534.
[1] YI Wen-hui, WANG Yan-ping, WANG Hua-tian, MA Xue-song, WANG Wen-bo. Influences of phenolic acids on soil nitrification in poplar plantation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 27-35.
[2] NI Gui-ping, WANG Yan-ping, WANG Hua-tian*, HAN Ya-fei, SANG Ya-lin. Extraction and amplification of bacterial DNA from soils of poplar plantation [J]. J4, 2013, 48(05): 23-28.
[3] TAN Xiu-mei,WANG Hua-tian*,KONG Ling-gang,WANG Yan-ping . Accumulation of phenolic acids in soil of a continuous cropping Poplar plantation and their effects on soil microbes [J]. J4, 2008, 43(1): 14-19 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[3] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[4] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[5] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[6] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[7] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] REN Min1,2, ZHANG Guang-hui1. Absorbing probabilities of random walks in an independent random  environment convergence in distribution on the half-line[J]. J4, 2013, 48(1): 93 -99 .
[10] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .