JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (2): 79-83.doi: 10.6040/j.issn.1671-9352.0.2018.017

Previous Articles    

Linear maps on triangular algebras for which the space of all inner derivations is Lie invariant

FEI Xiu-hai1, ZHANG Jian-hua2*   

  1. 1. College of Mathematics, Dianxi Science and Technology Normal University, Lincang 677099, Yunnan, China;
    2. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-02-25

Abstract: Let U be a triangular algebra with πA(Z(U))=Z(A)and πB(Z(U))=Z(B ), φ be a R-linear mapping from U into itself. If ID(U)is a Lie invariant subspace for φ, then there exists a Lie derivation δ on U and a center element λ such that φ(x)=δ(x)+λx for all x∈U.

Key words: triangular algebra, Lie invariant, Lie derivation, inner derivation

CLC Number: 

  • O177.1
[1] 张建华,曹怀信.套子代数上线性映射的Lie不变子空间[J].数学学报,2004,47(1):119-124. ZHANG Jianhua, CAO Huaixin. Lie invariant subspaces of linear mappings on nest subalgebras [J]. Acta Math Sinica, 2004, 47(1):119-124.
[2] CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63:117-127.
[3] DU Yiqiu, WANG Yu. k-commuting maps on triangular algebras[J]. Linear Algebra Appl, 2012, 436:1367-1375.
[4] BENKOVIC D, EREMITA D. Commuting traces and commutativity preserving maps on triangular algebras[J]. J Algebra, 2004, 280:797-824.
[5] BENKOVIC D. Jordan derivations and anti-derivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397:235-244.
[6] LI Yanbo, BENKOVIC D. Jordan generalized derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2011, 59(8):841-849.
[7] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432:2615-2622.
[8] ZHANG Jianhua, YU Weiyan. Jordan derivations of tringular algebras[J]. Linear Algebra Appl, 2006, 419:251-255.
[9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435:1137-1146.
[10] BENKOVIC D. Generalized Lie deriavtions on triangular algebras[J]. Linear Algebra Appl, 2011, 434:1532-1544.
[11] CHEN Lin, ZHANG Jianhua. Nonlinear Lie derivations on upper triangular matrix algebras[J]. Linear and Multilinear Algebra, 2008, 56(6):725-730.
[12] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432:2953-2960.
[13] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170.
[14] CHEUNG W S. Mappings on triangular algebras[D]. Victoria: University of Victoria, 2000.
[15] BENKOVIC D. Biderivations of triangular algebras[J]. Linear Algebra Appl, 2009, 431:1587-1602.
[16] CHRISTENSEN E. Derivations of nest algebras[J]. Math Ann, 1977, 229:155-161.
[17] CHEUNG W S. Lie derivations of triangular algebras[J].Linear and Multilinear Algebra, 2003, 51(12):299-310.
[1] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[2] LIU Dan, ZHANG Jian-hua*. Characterizations of ξ-Lie derivations of B(X) [J]. J4, 2013, 48(8): 41-44.
[3] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points [J]. J4, 2013, 48(4): 5-9.
[4] YU Wei-yan1,2, ZHANG Jian-hua1. Generalized Jordan derivations of full matrix algebras [J]. J4, 2010, 45(4): 86-89.
[5] JI Pei-sheng,QI Wei-qing,LIU Zhong-yan . Jordan ideals in triangular algebras of type II1 hyper-finite factors [J]. J4, 2008, 43(4): 6-08 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!