JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (1): 12-22.doi: 10.6040/j.issn.1671-9352.0.2019.040
Previous Articles Next Articles
FANG Shu, ZHANG Tai-lei*, LI Zhi-min
CLC Number:
[1] 纪安琼, 王儒芳. 海洛因依赖者复吸情况解决新思路[J]. 河南司法警官职业学院学报, 2018, 16(3):112-114. JI Anqiong, WANG Rufang. New ideas to solve the relapse situation of heroin addicts[J]. Journal of Henan Judicial Police Vocational College, 2018, 16(3):112-114. [2] WHITE E, COMISKEY C. Heroin epidemics treatment and ODE modelling[J]. Mathematical Biosciences, 2007, 208(1):312-324. [3] MULONE G, STRAUGHAN B. A note on heroin epidemics[J]. Mathematical Biosciences, 2009, 218(2):138-141. [4] SAMANTA G P. Dynamic behavior for a nonautonomous heroin epidemic model with time delay[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):161-178. [5] FANG Bin, LI Xuezhi, MARTCHEVA M, et al. Global stability for a heroin model with age-dependent susceptibility[J]. Journal of Systems Science and Complexity, 2015, 28(6):1243-1257. [6] 王诗雪, 刘俊利. 一类具有心理效应的海洛因毒品传播模型的全局稳定性[J]. 纺织高校基础科学学报, 2018, 31(3):329-334. WANG Shixue, LIU Junli. Global stability of a heroin epidemic model with psychological effect[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):329-334. [7] 周艳丽, 张卫国, 原三领. 一类随机SIRS传染病模型的持久性和灭绝性[J]. 生物数学学报, 2015, 30(1):79-92. ZHOU Yanli, ZHANG Weiguo, YUAN Sanling. Persistence and extinction in stochastic SIRS epidemic model[J]. Journal of Biomathematics, 2015, 30(1):79-92. [8] ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIRS epidemic model with saturated incidence[J]. Applied Mathematics Letters, 2014, 34(1):90-93. [9] XU Chaoqun, YUAN Sanling. An analogue of break-even concentration in a simple stochastic chemostat model[J]. Applied Mathematics Letters, 2015, 48:62-68. [10] SAHA T, CHAKRABARTI C. Stochastic analysis of prey-predator model with stage structure for prey[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):195-209. [11] 张艳宏, 许超群, 原三领. 一类接触率受到噪声干扰的随机SIS流行病模型研究[J]. 上海理工大学学报, 2015, 37(6):512-516. ZHANG Yanhong, XU Chaoqun, YUAN Sanling. Stochastic SIS epidemic model with contract rate influenced by noise[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6):512-516. [12] DRIESSCHE P V D, JAMES W. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48. [13] MAO Xuerong, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1):95-110. [14] MAO Xuerong. Stochastic differential equations and applications[M]. Chichester: Horwood Publishing, 2008. |
[1] | GAO Jian-zhong, ZHANG Tai-lei. Qualitative analysis of an SIRI epidemic model with stochastic effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 89-99. |
[2] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[3] | ZHANG Dao-xiang, HU Wei, TAO Long, ZHOU Wen. Dynamics of a stochastic SIS epidemic model with different incidences and double epidemic hypothesis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 10-17. |
[4] | CHEN Xin-yi. Dynamics of the nonautonomous predator system [J]. J4, 2013, 48(12): 18-23. |
[5] | ZHOU Yan-li1,2, ZHANG Wei-guo1. Persistence and extinction in stochastic SIS epidemic model with nonlinear incidence rate [J]. J4, 2013, 48(10): 68-77. |
|