JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (1): 12-22.doi: 10.6040/j.issn.1671-9352.0.2019.040

Previous Articles     Next Articles

Stochastic model of heroin drug dissemination with psychological effects

FANG Shu, ZHANG Tai-lei*, LI Zhi-min   

  1. School of Science, Changan University, Xian 710064, Shaanxi, China
  • Published:2020-01-10

Abstract: In this paper, considering the relapse of heroin addicts, we establish a stochastic model with psychological effects for the transmission of heroin drugs. The existence of global unique positive solutions of the model is proved by using stopping time theory. When the basic reproduction number of the corresponding deterministic model is equal or less than 1, the heroin-free propagation equilibrium point of the stochastic model is globally randomly asymptotically stable. It shows that the solutions of the stochastic model oscillates near the corresponding deterministic model heroin propagation equilibrium point when the basic reproduction number of the deterministic model is greater than 1. Sufficient conditions are obtained for the average persistence of solutions and the extinction of drugs. Finally, the numerical simulation further shows the dynamic behavior of the model.

Key words: stochastic model, oscillating behavior, persistence, extinction

CLC Number: 

  • O175.1
[1] 纪安琼, 王儒芳. 海洛因依赖者复吸情况解决新思路[J]. 河南司法警官职业学院学报, 2018, 16(3):112-114. JI Anqiong, WANG Rufang. New ideas to solve the relapse situation of heroin addicts[J]. Journal of Henan Judicial Police Vocational College, 2018, 16(3):112-114.
[2] WHITE E, COMISKEY C. Heroin epidemics treatment and ODE modelling[J]. Mathematical Biosciences, 2007, 208(1):312-324.
[3] MULONE G, STRAUGHAN B. A note on heroin epidemics[J]. Mathematical Biosciences, 2009, 218(2):138-141.
[4] SAMANTA G P. Dynamic behavior for a nonautonomous heroin epidemic model with time delay[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):161-178.
[5] FANG Bin, LI Xuezhi, MARTCHEVA M, et al. Global stability for a heroin model with age-dependent susceptibility[J]. Journal of Systems Science and Complexity, 2015, 28(6):1243-1257.
[6] 王诗雪, 刘俊利. 一类具有心理效应的海洛因毒品传播模型的全局稳定性[J]. 纺织高校基础科学学报, 2018, 31(3):329-334. WANG Shixue, LIU Junli. Global stability of a heroin epidemic model with psychological effect[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):329-334.
[7] 周艳丽, 张卫国, 原三领. 一类随机SIRS传染病模型的持久性和灭绝性[J]. 生物数学学报, 2015, 30(1):79-92. ZHOU Yanli, ZHANG Weiguo, YUAN Sanling. Persistence and extinction in stochastic SIRS epidemic model[J]. Journal of Biomathematics, 2015, 30(1):79-92.
[8] ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIRS epidemic model with saturated incidence[J]. Applied Mathematics Letters, 2014, 34(1):90-93.
[9] XU Chaoqun, YUAN Sanling. An analogue of break-even concentration in a simple stochastic chemostat model[J]. Applied Mathematics Letters, 2015, 48:62-68.
[10] SAHA T, CHAKRABARTI C. Stochastic analysis of prey-predator model with stage structure for prey[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):195-209.
[11] 张艳宏, 许超群, 原三领. 一类接触率受到噪声干扰的随机SIS流行病模型研究[J]. 上海理工大学学报, 2015, 37(6):512-516. ZHANG Yanhong, XU Chaoqun, YUAN Sanling. Stochastic SIS epidemic model with contract rate influenced by noise[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6):512-516.
[12] DRIESSCHE P V D, JAMES W. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[13] MAO Xuerong, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1):95-110.
[14] MAO Xuerong. Stochastic differential equations and applications[M]. Chichester: Horwood Publishing, 2008.
[1] GAO Jian-zhong, ZHANG Tai-lei. Qualitative analysis of an SIRI epidemic model with stochastic effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 89-99.
[2] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[3] ZHANG Dao-xiang, HU Wei, TAO Long, ZHOU Wen. Dynamics of a stochastic SIS epidemic model with different incidences and double epidemic hypothesis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 10-17.
[4] CHEN Xin-yi. Dynamics of the nonautonomous predator system [J]. J4, 2013, 48(12): 18-23.
[5] ZHOU Yan-li1,2, ZHANG Wei-guo1. Persistence and extinction in stochastic SIS epidemic model with nonlinear incidence rate [J]. J4, 2013, 48(10): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Fang-yuan, MENG Xian-jia, TANG Zhan-yong, FANG Ding-yi, GONG Xiao-qing. Android application protection based on smali code obfuscation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 44 -50 .
[2] LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1 -12 .
[3] GU Shen-ming, LU Jin-lu, WU Wei-zhi, ZHUANG Yu-bin. Local optimal granularity selections in generalized multi-scale decision systems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 1 -8 .
[4] CHEN Hong-yu1, ZHANG Li2. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 26 -30 .
[5] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1 -11 .
[6] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51 -55 .
[7] WAN Peng-fei, GAO Xing-bao. Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 56 -66 .
[8] WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67 -77 .
[9] WANG Ai-lan, SONG Wei-tao, ZHAO Xiu-feng. Properties of the expansion factor over quotient ring[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 78 -84 .
[10] WANG Ran-qun, ZUO Lian-cui. The linear 2-arboricity of plane graphs without 4-cycles and 5-cycles[J]. J4, 2012, 47(6): 71 -75 .