JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (5): 10-17.doi: 10.6040/j.issn.1671-9352.0.2016.531
Previous Articles Next Articles
ZHANG Dao-xiang1,2, HU Wei1, TAO Long1, ZHOU Wen1
CLC Number:
[1] 马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社, 2004. MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematical modeling and research of infectious diease dynamics[M]. Beijing: Science Press, 2004. [2] 张道祥, 丁伟伟. 具非连续收获策略的Gilpin-Ayala竞争系统周期解的存在性[J]. 安徽师范大学学报(自然科学版), 2014, 37(6):515-519. ZHANG Daoxiang, DING Weiwei. Existence of periodic solutions of gilpin-ayala competitive system with discontinuous harvesting[J]. Journal of Anhui Normal University(Natural Science), 2014, 37(6):515-519. [3] GREENHALGH D, AKHAN Q J, Lewis F I. Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity[J]. Nonlinear Anal, 2005, 63:779-788. [4] KERMAC W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemic[J]. Proceedings of the Royal Society, 1932, A138:55-83. [5] CHEN Q L, TENG Z D, WANG L, et al. The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence[J]. Nonlinear Dynam, 2013, 719(1/2):55-73. [6] KUNIYA T, INABA H. Endemic threshold results for an age-structured SIS epidemic model with periodic parameters[J]. J Math Anal Appl, 2013, 402(2):477-492. [7] LI X Z, LI W S, GOHOS M. Stability and bifurcation of an SIS epidemic model with treatment[J]. Chaos Solitons Fractals, 2009, 42(5):2822-2832. [8] ZHANG X, LIU X. Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment[J]. Nonlinear Anal, 2009, 10(2):565-575. [9] GRAY A, GREENHALGH D, HU L, et al. A stochastic differential equation SIS epidemic model[J]. SIAM J Appl Math, 2001, 71(3):876-902. [10] ZHAO Y N, JIANG D Q, REGAN D O. The extinction and persistence of stochastic SIS epidemic model with Vaccination[J]. Phy A, 2013, 392(20):4916-4927. [11] LIN Y G, JIANG D Q, WANG S. Stationary distribution of a stochastic SIS epidemic model with Vaccination[J]. Phy A: Statistical Mechanics and its Applications, 2014, 394(2):187-197. [12] 周艳丽, 张卫国. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. 山东大学学报(理学版), 2013, 48(10): 68-77. ZHOU Yanli, ZHANG Weiguo. Persistence and extinction in stochastic SIS epidemic model with nonlinear incidence rate[J]. Journal of Shandong University(Natural Science), 2013, 48(10):68-77. [13] MENG X Z, ZHAO S N, FENG T, et al. Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis[J]. J Math Anal Appl, 2016, 433(1):227-242. [14] XIAO D, RUAN S. Global analysis of an epidemic model with nonmonotone incidence rate[J]. Math Biosci, 2007, 208(2):419-429. |
[1] | GAO Rui-mei, CHU Ying. Freeness of arrangements between the Weyl arrangements of types An-1 and Bn [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 70-75. |
[2] | ZHANG Qian, LI Hai-yang. The iterative fraction thresholding algorithm in sparse information processing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 76-82. |
[3] | SHI Zhang-lei, LI Wei-guo. A† graded hard thresholding pursuit algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 58-64. |
[4] | WANG Ya-qi, WANG Jing. Rumor spreading on dynamic complex networks with curious psychological mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(6): 99-104. |
[5] | LIANG Lei, LIU Gui-rong. Analysis of an epidemic model with information on overlay network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 107-114. |
[6] | ZHU Xi, DONG Xi-shuang, GUAN Yi, LIU Zhi-guang. Sentiment analysis of Chinese Micro-blog based on semi-supervised learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 37-42. |
[7] | CHEN Gui-ying. Stability analysis of generalized fuzzy bidirectional associative #br# memory networks with thresholds [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 80-85. |
[8] | ZHAO Xiu-feng, WANG Ai-lan, WANG Xiang. Threshold scheme for LWE inversion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 34-37. |
[9] | WU Fang-lan1, ZUO Lian-cui2*. Equitable colorings of a special class of Cartesian products of graphs [J]. J4, 2013, 48(4): 20-24. |
[10] | ZHOU Yan-li1,2, ZHANG Wei-guo1. Persistence and extinction in stochastic SIS epidemic model with nonlinear incidence rate [J]. J4, 2013, 48(10): 68-77. |
[11] | MA Yan, LIU Jian-wei, ZHANG Yu-fei. Threshold signature-based lightweight clustering handover scheme for Ad hoc networks [J]. J4, 2012, 47(11): 78-82. |
[12] | SUN Jing-Yun. Absolute ruin for the compound Piosson risk model with a threshold dividend strategy [J]. J4, 2010, 45(3): 105-110. |
[13] | . Global qualitative analysis of a new SIR epidemic disease model with vertical transmission and pulse vaccination [J]. J4, 2009, 44(5): 67-73. |
[14] | ZHU Yi,DAI Tao,ZHANG Xian-feng . A state-tree based (t, n) secret sharing scheme [J]. J4, 2008, 43(9): 68-72 . |
[15] | HUA Zhao-xiu,NIU Ming-fei . A threshold dividend strategy in a risk model with inter-claim-dependent claim sizes [J]. J4, 2008, 43(10): 91-96 . |
|