JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 58-64.doi: 10.6040/j.issn.1671-9352.0.2016.474

Previous Articles     Next Articles

A graded hard thresholding pursuit algorithm

SHI Zhang-lei, LI Wei-guo   

  1. College of Science, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2016-10-13 Online:2017-08-20 Published:2017-08-03

Abstract: Inspired by hard thresholding pursuit algorithm(HTP). A graded hard thresholding pursuit algorithm(APGHTP)was proposed for solving compressive sensing problems. The theoretical guarantees of the new algorithm were given under restricted isometry property(RIP)condition.In the numerical experiment, regardless of whether the measured value contains error, APGHTP performance is better, which proves the sparse recovery ability of the algorithm.When recovering sparse vectors, the number of iterations required for APGHTP is the same as that of sparse vectors.

Key words: hard thresholding pursuit, Moore-Penrose inverse, compressive sensing, sparse solution

CLC Number: 

  • O242
[1] NATARAJAN B K. Sparse approximate solutions to linear systerms[J]. SIAM Journal on Computing, 1995, 24(2):227-234.
[2] CANDÈS E J, ROMBERG J K, TAO TERENCE. Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure & Applied Mathematics, 2005, 59(8):410-412.
[3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[4] DONOHO D L. Neighborly polytopes and sparse solution of underdetermined linear equations[EB/OL].[2016-04-06]. http://statweb.stanford.edu/~donoho/Reports/2005/NPa SSULE-01-28-05.pdf
[5] DONOHO D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete & Computational Geometry, 2006, 35(4):617-652.
[6] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[7] NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied & Computational Harmonic Analysis, 2008, 26(3):301-321.
[8] BLUMENSATH T, DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied & Computational Harmonic Analysis, 2009, 27(3):265-274.
[9] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
[10] YIN Wotao, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. Siam Journal on Imaging Sciences, 2008, 1(1):143-168.
[11] YIN Wotao. Analysis and generalizations of the linearized bregman method[J].Siam Journal on Imaging Sciences, 2010, 3(4):856-877.
[12] FOUCART S. Hard thresholding pursuit: an algorithm for compressive sensing[J]. Siam Journal on Numerical Analysis, 2011, 49(6):2543-2563.
[13] BOUCHOT J L, FOUCART S, HITCZENKO P. Hard thresholding pursuit algorithms: number of iterations[J]. Applied & Computational Harmonic Analysis, 2016, 41(2):412-435.
[14] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses[M].New York: Springer-Verlag, 2003.
[1] XU Jun-lian1,2. Solutions to the operator equation AXB*-BX*A*=C [J]. J4, 2012, 47(4): 47-52.
[2] WU Shu-xia, LIU Xiao-ji*. Reverse order laws for generalized inverse in C*-algebras [J]. J4, 2011, 46(4): 82-85.
[3] YUAN Wan-gui, KONG Xiang-zhi. Weighted Moore-Penrose inverses on rings [J]. J4, 2011, 46(12): 55-59.
[4] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C [J]. J4, 2010, 45(6): 74-80.
[5] WANG Hong-xing1,2, LIU Xiao-ji3. The weighted Moore-Penrose inverse over integral domains [J]. J4, 2010, 45(10): 9-14.
[6] SONG Cai-Qin, DIAO Jian-Li, WANG Xiao-Dong. Reverse order law for the weighted Moore-Penrose inverse of a triple left matrix semitensor product [J]. J4, 2009, 44(10): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!