JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 58-64.doi: 10.6040/j.issn.1671-9352.0.2016.474
Previous Articles Next Articles
SHI Zhang-lei, LI Wei-guo
CLC Number:
[1] NATARAJAN B K. Sparse approximate solutions to linear systerms[J]. SIAM Journal on Computing, 1995, 24(2):227-234. [2] CANDÈS E J, ROMBERG J K, TAO TERENCE. Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure & Applied Mathematics, 2005, 59(8):410-412. [3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [4] DONOHO D L. Neighborly polytopes and sparse solution of underdetermined linear equations[EB/OL].[2016-04-06]. http://statweb.stanford.edu/~donoho/Reports/2005/NPa SSULE-01-28-05.pdf [5] DONOHO D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete & Computational Geometry, 2006, 35(4):617-652. [6] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. [7] NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied & Computational Harmonic Analysis, 2008, 26(3):301-321. [8] BLUMENSATH T, DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied & Computational Harmonic Analysis, 2009, 27(3):265-274. [9] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627. [10] YIN Wotao, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. Siam Journal on Imaging Sciences, 2008, 1(1):143-168. [11] YIN Wotao. Analysis and generalizations of the linearized bregman method[J].Siam Journal on Imaging Sciences, 2010, 3(4):856-877. [12] FOUCART S. Hard thresholding pursuit: an algorithm for compressive sensing[J]. Siam Journal on Numerical Analysis, 2011, 49(6):2543-2563. [13] BOUCHOT J L, FOUCART S, HITCZENKO P. Hard thresholding pursuit algorithms: number of iterations[J]. Applied & Computational Harmonic Analysis, 2016, 41(2):412-435. [14] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses[M].New York: Springer-Verlag, 2003. |
[1] | XU Jun-lian1,2. Solutions to the operator equation AXB*-BX*A*=C [J]. J4, 2012, 47(4): 47-52. |
[2] | WU Shu-xia, LIU Xiao-ji*. Reverse order laws for generalized inverse in C*-algebras [J]. J4, 2011, 46(4): 82-85. |
[3] | YUAN Wan-gui, KONG Xiang-zhi. Weighted Moore-Penrose inverses on rings [J]. J4, 2011, 46(12): 55-59. |
[4] | TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C [J]. J4, 2010, 45(6): 74-80. |
[5] | WANG Hong-xing1,2, LIU Xiao-ji3. The weighted Moore-Penrose inverse over integral domains [J]. J4, 2010, 45(10): 9-14. |
[6] | SONG Cai-Qin, DIAO Jian-Li, WANG Xiao-Dong. Reverse order law for the weighted Moore-Penrose inverse of a triple left matrix semitensor product [J]. J4, 2009, 44(10): 80-86. |
|