JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (7): 32-37.doi: 10.6040/j.issn.1671-9352.0.2020.100

Previous Articles    

A characterization of ξ-skew Jordan derivable mappings on factor von Neumann algebras

ZHANG Fang-juan   

  1. School of Science, Xian University of Posts and Telecommunications, Xian 710121, Shaanxi, China
  • Published:2020-07-08

Abstract: Let R be a factor von Neumann algebra with dim R>1. For given complex number ξ and ξ ≠0, if a map δ:R→R satisfies δ((A·B)ξ)=(δ(A)·B)ξ+(A·δ(B))ξ for all A,B∈R, δ is an additive *-derivation and δ(ξA)=ξδ(A). In particular, if the von Neumann algebra R is infinite type Ⅰ factors, a concrete characterization of δ is given.

Key words: ξ-skew Jordan derivable mapping, von Neumann algebra, *-derivation

CLC Number: 

  • O177.1
[1] QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear Algebra and its Applications, 2011, 434(3):669-682.
[2] QI Xiaofei. Characterizing Lie(ξ-Lie)derivations on triangular algebras by local actions[J]. Electronic Journal of Linear Algebra, 2013, 26(1):816-835.
[3] ZHANG Fangjuan. Nonlinear skew Jordan derivable maps on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(10):2090-2103.
[4] YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2012, 437(8):1979-1991.
[5] ŠEMRL P. Additive derivations of some operator algebras[J]. Illinois Journal of Mathematics, 1991, 35(2):234-240.
[6] ŠEMRL P. Jordan *-derivations of standard operator algebras[J]. Proceeding of the American Mathematical Society, 1994, 120(2):515-518.
[7] 梁耀仙, 张建华. 因子von Neumann代数上的非线性*ξ-Lie可导映射[J]. 数学进展, 2018, 47(6):913-922. LIANG Yaoxian, ZHANG Jianhua. Nonlinear *ξ-Lie derivable mappings on factor von Neumann algebras[J]. Advances in Mathematics, 2018, 47(6):913-922.
[8] ZHANG Fangjuan, QI Xiaofei, ZHANG Jianhua. Nonlinear *-Lie higher derivations on factor von Neumann algebras[J]. Bulletin of the Iranian Mathematical Society, 2016, 42(3):659-678.
[9] 张芳娟. 素*-环上非线性保XY-ξYX*积[J]. 数学学报, 2014, 57(4):775-784. ZHANG Fangjuan. Nonlinear preserving product XY-ξYX* on prime *-ring[J]. Acta Mathematica Sinica Chinese Series, 2014, 57(4):775-784.
[1] ZHOU You, ZHANG Jian-hua. Nonlinear maps preserving mixed Lie triple ξ-product on factor von Neumann algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 106-111.
[2] ZHANG Fang-Juan, PANG Yong-Feng, ZHANG Jian-Hua, ZHU Xin-Hong, JI Guo-Xing. Lie-* derivations on factor von Neumann algebras [J]. J4, 2010, 45(2): 58-60.
[3] CUI Yun-Li, ZHANG Jian-Hua. Linear maps preserving zeros of a polynominal on  factor von Neumann algebras [J]. J4, 2009, 44(10): 48-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!