JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 84-91.doi: 10.6040/j.issn.1671-9352.0.2020.486
Previous Articles Next Articles
LIU Meng-xue, LI Jie-mei*, YAO Yan-yan
CLC Number:
[1] MA Ruyun, WANG Haiyan. On the existence of positive solutions of fourth-order ordinary differential equations[J]. Applicable Analysis, 1995, 59(1/2/3/4):225-231. [2] GRAEF J R, YANG B. Existence and nonexistence of positive solutions of fourth order nonlinear boundary value problems[J]. Applicable Analysis, 2000, 74(1/2):201-214. [3] LIU Yuji, GE Weigao. Double positive solutions of fourth-order nonlinear boundary value problems[J]. Applicable Analysis, 2003, 82(4):369-380. [4] BAI Chuanzhi. Triple positive solutions of three-point boundary value problems for fourth-order differential equtions[J]. Computers and Mathematics with Applications, 2008, 56(5):1364-1371. [5] ZHAI Chenbo, SONG Ruipeng, HAN Qianqian. The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem[J]. Computers and Mathematics with Applications, 2011, 62(6):2639-2647. [6] YANG Yunrui. Triple positive solutions of a class of fourth-order two-point boundary value problems[J]. Applied Mathematics Letters, 2010, 23(4):366-370. [7] CABADA A, SAAVEDRA L. Existence of solutions for nth-order nonlinear differential boundary value problems by means of fixed point theorems[J]. Nonlinear Analysis: Real World Applications, 2018, 42:180-206. [8] BOUTERAA N, BENAICHA S, DJOURDEM H, et al. Positive solutions of nonlinear fourth-order two-point boundary value problem with a parameter[J]. Romanian Journal of Mathematics and Computer Science, 2018, 8(1):17-30. [9] 张亚莉. 一类非线性四阶常微分方程边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2019, 56(6):1004-1008. ZHANG Yali. Existence of positive solutions for a class of nonlinear fourth-order ordinary differential equations with boundary values[J]. Journal of Sichuan University(Natural Science Edition), 2019, 56(6):1004-1008. |