JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (6): 75-80.doi: 10.6040/j.issn.1671-9352.0.2018.496

Previous Articles    

Uniqueness of positive solutions of singular p-biharmonic equations with Hardy terms

  

  1. School of Science, North University of China, Taiyuan 030051, Shanxi, China
  • Published:2019-06-05

Abstract: We study a class of singular p-biharmonic equations with Hardy terms. The existence and uniqueness of the positive solution for above problem is obtained by minimization method.

Key words: Hardy terms, singular p-biharmonic equations, minimization method, positive solution, existence and uniqueness

CLC Number: 

  • O175.25
[1] PERERA K, SILVA E A B. Existence and multiplicity of positive solutions for singular quasilinear problems[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2):1238-1252.
[2] ZHAO L, HE Y, ZHAO P. The existence of three positive solutions of a singular p-Laplacian problem[J]. Nonlinear Analysis, 2011, 74(16):5745-5753.
[3] BUENO H, PAES-LEME L, RODRIGUES H C. Multiplicity of solutions for p-biharmonic problems with critical growth[J]. Rocky Mountain J Math, 2018, 48:425-442.
[4] CHEN Q, CHEN C. Infinitely many solutions for a class of p-biharmonic equation in RN[J]. Bull Iranian Math Soc, 2017, 43(1):205-215.
[5] 廖家锋, 陈明, 张鹏. 一类奇异共振椭圆方程正解的唯一性[J]. 数学杂志, 2017, 37(3):513-518. LIAO Jiafeng, CHEN Ming, ZHANG Peng. Uniqueness of positive solutions for a class of singular resonance elliptic equations[J]. Journal of Mathematics, 2017, 37(3):513-518.
[6] 廖家锋, 李红英, 段誉. 一类奇异p-Laplacian方程正解的唯一性[J]. 西南大学学报(自然科学版), 2016, 38(6):45-49. LIAO Jiafeng, LI Hongying, DUAN Yu. Uniqueness of positive solutions for a class of singular p-Laplacian equations[J]. Journal of Southwest University(Natural Science Edition), 2016, 38(6):45-49.
[7] 李红英, 佘连兵, 廖家锋. 一类奇异p-Laplace方程正解的存在性[J]. 西北师范大学学报(自然科学版), 2016, 52(4):1-4. LI Hongying, SHE Lianbing, LIAO Jiafeng. Uniqueness of positive solutions for a class of singular p-Laplace equations[J]. Journal of Northwest Normal University(Natural Science Edition), 2016, 52(4):1-4.
[8] 唐榆婷, 唐春雷. 一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(6):81-86. TANG Yuting, TANG Chunlei. Existence of positive solutions for a class of Kirchhoff equations with Hardy-Sobolev critical exponents[J]. Journal of Southwest University(Natural Science Edition), 2017, 39(6):81-86.
[9] YANG Ruirui, ZHANG Wei, LIU Xiangqing. Sign-changing solutions for p-biharmonic equations with Hardy potential in RN[J]. Acta Mathematica Scientia, 2017, 37B(3):593-606.
[10] LIAO Jiafeng, KE Xiaofeng, LEI Chunyu, et al. A uniqueness result for Kirchhoff type problems with singularity[J]. Applied Mathematics Letters, 2016, 59:24-30.
[11] HUANG Yisheng, LIU Xiangqing. Sign-changing solutions for p-biharmonic equationswith Hardy potential[J]. Journal of Mathematical Analysis and Applications, 2014, 412(3):142-154.
[12] DAVIES E B, HINZ A M. Explicit constants for Rellich inequalities[J]. Mathematische Zeitschrift, 1998, 227(3):511-523.
[13] RUDIN W. Real and complex analysis[M]. New York: McGraw-Hill, 1986.
[14] BRÉZIS H, LIEB E. A relation between pointwise convergence of functions and convergence of functionals[J]. Proceedings of the American Mathematical Society, 1983, 88(3):486-490.
[15] SUN Y J, WU S, LONG Y. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. Journal of Differential Equations, 2001, 176(2):511-531.
[16] VÁZQUEZ J L. A strong maximum principle for some quasilinear elliptic equations[J]. Applied Mathematics and Optimization, 1984, 12(1):191-202.
[17] LINDQVIST Peter. On the equation div(|∇u|p-2∇u)+λup-2u=0[J]. Proceedings of the American Mathematical Society, 1992, 116(2):583-584.
[1] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[2] . Existence of positive solutions for a class of nonlinear second-order Dirichlet problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 64-69.
[3] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[4] YAN Dong-liang. Positive solutions of a second order periodic problems with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 69-75.
[5] LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55.
[6] ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72.
[7] FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57.
[8] GUO Li-jun. Existence of positive solutions for a third-order three-point boundary value problem of nonlinear differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 47-53.
[9] WANG Xian-fei, JIANG Long, MA Jiao-jiao. Multidimensional backward doubly stochastic differential equations with generators of Osgood type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 24-33.
[10] CHEN Qiang, JIA Mei, ZHANG Hai-bin. Existence and uniqueness of solutions for nonlinear fractional four-point boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 42-48.
[11] YANG Wen-bin, LI Yan-ling. Dynamics research in a predator-prey system with a nonlinear growth rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 80-87.
[12] SUN Yan-mei. Existence of positive solutions for singular fractional #br# differential equations boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 71-75.
[13] ZHANG Lu, MA Ru-yun. Bifurcation structure of asymptotically linear second-order #br# semipositone discrete boundary value problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 79-83.
[14] QIN Xiao-na, JIA Mei*, LIU Shuai. Existence of positive solutions for fractional differential equations boundary value problems with Caputo derivative [J]. J4, 2013, 48(10): 62-67.
[15] YAO Qing-liu. Existence of a positive solution of singular nonautonomous third-order two-point boundary value problems [J]. J4, 2012, 47(6): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!