JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 42-48.doi: 10.6040/j.issn.1671-9352.0.2014.157
Previous Articles Next Articles
CHEN Qiang, JIA Mei, ZHANG Hai-bin
CLC Number:
[1] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2012. [2] PODLUBNY I. Fraction differential equations[M]. New York: Acad Press, 1999. [3] DIETHELM K. The analysis of fractional differential equations[M]. Heidelberg: Spring-Verlag, 2010. [4] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland Mathematics Studies, Vol.204, Elsevier Science B V Amsterdam, 2006. [5] SU Xinwei, LIU Landong. Existence of solution for boundary value problem of nonlinear fractional differential equation[J]. Applied Mathematics A Journal of Chinese Universities: B, 2007, 22(3):291-298. [6] BAI Zhanbing, SUN Weichen. Existence and multiplicity of positive solutions for singular fractional boundary value problems[J]. Computers and Mathematics with Applications, 2012, 63(9):1369-1381. [7] SVATOSLAV S. The existence of positive solutions of singular fractional boundary value problems[J]. Computers and Mathematics with Applications, 2011, 62(3):1379-1388. [8] ZHAO Xiangkui, CHAI Chengwen, GE Weigao. Positive solutions for fractional four-point boundary value problems[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(9):3665-3672. [9] FENG Meiqiang, ZHANG Xuemei, GE Weigao. New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Boundary Value Problems, 2011, 2011:1-20. [10] 方海琴, 刘锡平, 林乐刚.分数阶微分方程反周期边值问题解的存在性[J]. 山东大学学报:理学版, 2012, 47(6):5-9. FANG Haiqin, LIU Xiping, LIN Legang. Existence of a solution for anti-periodic boundary value problems of fractional differential equations[J]. Journal of Shandong University: Natural Science, 2012, 47(6):5-9. [11] 窦丽霞, 刘锡平, 金京福,等. 分数阶积分微分方程多点边值问题解的存在性和唯一性[J]. 上海理工大学学报, 2012, 34(1):52-55. DOU Lixia, LIU Xiping, JIN Jingfu, et al. Existence and uniqueness of solutions of multi-point boundary value problems for integro-differential equations of fractional order[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(1):52-55. [12] NYAMORADI N. Existence of solutions for multi-point boundary value problem for fractional differential equations[J]. Arab Journal of Mathematical Sciences, 2012, 18:165-175. [13] 王淑, 贾梅, 祁卫杰. 非线性项变号的分数阶微分方程边值问题正解的存在性[J]. 上海理工大学学报, 2013, 35(1):1-6. WANG Shu, JIA Mei, QI Weijie, Existence of positive solutions for a class of fractional differential equations with sign changing nonlinearities[J]. Journal of University of Shanghai for Science and Technology, 2013, 35(1):1-6. [14] SALEM H A H. On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies[J]. Journal of Computational and Applied Mathematics, 2009, 224(2):565-572. [15] 秦小娜, 贾梅, 刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. 山东大学学报:理学版, 2013, 48(10):62-67. QIN Xiaona, JIA Mei, LIU Shuai, Existence of positive solutions for fractional differential equations boundary value problems with Caputo derivative[J]. Journal of Shandong University: Natural Science, 2013, 48(10):62-67. [16] BAI Zhanbing, LU Haishen. Positive solution for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Application, 2005, 311(2):495-505. |
[1] | SHEN Liu-xiao, ZHAO Chun. Optimal control for inputting rate of a size-structure competitive system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 21-29. |
[2] | CAO Xue-jing, LUO Zhi-xue. Optimal control of forest evolution system in polluted environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 15-20. |
[3] | WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56. |
[4] | XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54. |
[5] | LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55. |
[6] | ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72. |
[7] | FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57. |
[8] | RONG Wen-ping, CUI Jing. μ-pseudo almost automorphic solutions for a class of stochastic evolution equations under non-Lipschitz conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 64-71. |
[9] | CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83. |
[10] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
[11] | WANG Xian-fei, JIANG Long, MA Jiao-jiao. Multidimensional backward doubly stochastic differential equations with generators of Osgood type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 24-33. |
[12] | YANG Hao, LIU Xi-ping, WU Gui-yun. Existence of the solutions for a type of nonlocal boundary value problems for fractional differential equations with p-Laplacian operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 56-62. |
[13] | ZHENG Chun-hua, LIU Wen-bin. Existence of positive solutions of the boundary value problem for a class of fractional differential equations with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 73-79. |
[14] | YANG Xue-jie, SUN Guo-zheng*, CHEN Wen. Shock solution for a quasilinear singularly perturbed problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 79-83. |
[15] | ZHOU Wen-xue1,2, LIU Hai-zhong1. Existence of solution for the boundary value problem of a class of fractional differential equation [J]. J4, 2013, 48(8): 45-49. |
|