JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (5): 76-84.doi: 10.6040/j.issn.1671-9352.1.2020.019
WANG Xue-yan1,2,3, HE Ting-ting1,2,3*, HUANG Xiang4, WANG Jun-mei5, PAN Min6
CLC Number:
[1] WANG Junmei, PAN Min, HE Tingting, et al. A pseudo-relevance feedback framework combining relevance matching and semantic matching for information retrieval[J]. Information Processing & Management, 2020, 57(6):102342. [2] PAN Min, HUANG Jimmy Xiangji, HE Tingting, et al. A simple kernel co-occurrence-based enhancement for pseudo-relevance feedback[J]. Journal of the Association for Information Science and Technology, 2020, 71(3):264-281. [3] PAN Min, ZHANG Yue, ZHU Qiang, et al. An adaptive term proximity based Rocchios model for clinical decision support retrieval[J]. BMC Medical Informatics and Decision Making, 2019, 19(Suppl9):251. doi: 10.1186/s12911-019-0986-6. [4] SCOLLON R. Eight legs and one elbow: stance and structure in Chinese English compositions[C] //International Reading Association, Second North American Conference on Adult and Adolescent Literacy. Banff:[s.n.] , 1991: 21. [5] 蔡基刚. 英汉文章中心思想表达位置差异及其对中国学生英语写作影响[J]. 国外外语教学, 2007(1):1-7. CAI Jigang. The difference in the expression of central ideas in English and Chinese articles and its influence on Chinese students English writing[J]. Foreign Language Learning, 2007(1):1-7. [6] TYNE J L. Fundamentals of good writing: a handbook of modern rhetoric[J]. Thought: Fordham University Quarterly, 1952, 27(3):462-464. [7] LV Y, ZHAI C X. Positional relevance model for pseudo-relevance feedback[C] //Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2010: 579-586. [8] ZHAO J, HUANG J X, HE B. CRTER: using cross terms to enhance probabilistic information retrieval[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 155-164. [9] MIAO J, HUANG J X, YE Z. Proximity-based rocchios model for pseudo relevance[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012: 535-544. [10] ZHAO J, HUANG J X, WU S. Rewarding term location information to enhance probabilistic information retrieval[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012: 1137-1138. [11] ROCCHIO J J. Relevance feedback in information retrieval[M] //The Smart Retrieval System-experiments in Automatic Document Processing. Englewood Cliffs: Prentice-Hall, 1971: 313-323. [12] CHEN Q, HU Q, HUANG J X, et al. Enhancing recurrent neural networks with positional attention for question answering[C] //Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 993-996. [13] SONG R, YU L, WEN J R, et al. A proximity probabilistic model for information retrieval[J]. Microsoft Research, 2011. https://www.researchgate.net/publication/228731320_A_Proximity_Probabilistic_Model_for_Information_Retrieval. [14] GIACHANOU A, CRESTANI F. Opinion retrieval in Twitter: is proximity effective[C] //Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York: ACM, 2016: 1146-1151. [15] EHSAN N, SHAKERY A. Candidate document retrieval for cross-lingual plagiarism detection using two-level proximity information[J]. Information Processing & Management, 2016, 52(6):1004-1017. [16] LV Y, ZHAI C X. Positional language models for information retrieval[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009: 299-306. [17] YE Z, HUANG J X. A simple term frequency transformation model for effective pseudo relevance feedback[C] //Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2014: 323-332. |
[1] | TANG Liang, ZHAO Xiao-feng, XI Yao-yi, YI Mian-zhu. The method of query expansion based on local co-occurrence and context similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 29-36. |
[2] | MENG Ye, ZHANG Peng, SONG Da-wei. Study on collection statistics for parameter selection in pseudo relevance feedback [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 18-22. |
[3] | XU Ye, XU Wei-ran. Algorithm of knowledge base cumulative citation recommendation based on semantic features expansion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 26-32. |
[4] | MA Fei-xiang, LIAO Xiang-wen, YU Zhi-yong, WU Yun-bing, CHEN Guo-long. A text opinion retrieval method based on knowledge graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 33-40. |
[5] | SHI Song1, WANG Ming-wen1, TU Wei2, HE Shi-zhu1. Extended information retrieval model based on the Markov network cliques [J]. J4, 2011, 46(5): 54-57. |
[6] | XU Jian-min1,3, CHEN Zhen-ya2, CUI Yan3. Query expansion method based on the user interest and term relation [J]. J4, 2011, 46(5): 49-53. |
|