JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (7): 53-64.doi: 10.6040/j.issn.1671-9352.0.2021.232

Previous Articles    

Research on characteristics of air quality change in Zhejiang Province——based on functional data analysis

WU Qi-ran, ZHOU Li-kai*, SUN Jin-jin, WANG Nian-ge, YU Qun-fang   

  1. School of Data Science, Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China
  • Published:2021-07-19

Abstract: In order to explore the characteristics of air quality changes in Zhejiang Province, this paper selects the monthly air quality index data and the monthly data of the concentration of six major air pollutants in Zhejiang Province from 2014 to 2019 for research. First, this article fits the air quality index data and the six air pollutant concentration data into a function curve. Then, in order to discover the dynamic change characteristics of the air quality index and the concentration of six air pollutants in Zhejiang Province, this paper performs K-means clustering on the principal component basis coefficients of the air quality index curve family, and analyzes the six air pollutant concentration curve families perform multivariate Funclust clustering. Finally, we used ArcGIS to draw the spatial distribution map of the clustering results in Zhejiang Province and explored the spatial distribution characteristics of the air quality in Zhejiang Province. The results show that the characteristics of air quality changes in Zhejiang Province can be divided into 4 types of regions spatially, showing a trend of gradual deterioration from south to north; in terms of time, the air quality index of Zhejiang Province has been steadily decreasing year by year, and the concentration of SO2 has dropped significantly. The concentrations of the other five pollutants have obvious similarities and significant seasonal characteristics.

Key words: Zhejiang Province air quality, functional principal component analysis, K-means clustering, multivariate Funclust clustering

CLC Number: 

  • O212
[1] 梁银双, 刘黎明, 卢媛. 基于函数型数据聚类的京津冀空气污染特征分析[J]. 调研世界, 2017(5):43-48. LIANG Yinshuang, LIU Liming, LU Yuan. Analysis of Beijing-Tianjin-Hebei air pollution characteristics based on functional data clustering[J]. Survey World, 2017(5):43-48.
[2] 郦少将. 基于函数型聚类的浙江省空气污染时空特征分析[J]. 河南教育学院学报(自然科学版),2018, 27(1):19-24. LI Shaojiang. Analysis of spatial and temporal characteristics of air pollution in Zhejiang Province based on functional clustering[J]. Journal of Henan Institute of Education(Natural Science Edition), 2018, 27(1):19-24.
[3] 余晓美, 沈永昌. 中国环境保护重点城市空气质量的动态特征分析[J]. 统计与决策, 2019, 35(11):91-94. YU Xiaomei, SHEN Yongchang. Analysis of the dynamic characteristics of air quality in key environmental protection cities in China[J]. Statistics and Decision, 2019, 35(11):91-94.
[4] 李豫. 基于多元函数型数据聚类的我国城市空气质量时空特征分析[D]. 上海:上海师范大学, 2019. LI Yu. Analysis of temporal and spatial characteristics of urban air quality in my country based on multivariate functional data clustering[D]. Shanghai:Shanghai Normal University, 2019.
[5] 翟宇申. 多元函数型数据聚类及其在空气污染中的应用[D]. 柳州:广西科技大学, 2018. ZHAI Yushen. Multivariate functional data clustering and its application in air pollution[D]. Liuzhou: Guangxi University of Science and Technology, 2018.
[6] IGNACCOLO R, GHIGO S, GIOVENALI E. Analysis of air quality monitoring networks by functional clustering[J]. Environmetrics, 2008, 19(7):672-686.
[7] KOSIOROWSKI D, SZLACHTOWSKA E. K-local median algorithm for functional data in empirical analysis of air pollution data[C] // The 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. [S.l.] :[s.n.] , 2017.
[8] MENG Y, LIANG J, CAO F, et al. A new distance with derivative information for functional K-means clustering algorithm[J]. Information Sciences, 2018, 463/464:166-185.
[9] CHEN J H, CHANG Y C, HUNG W L. A self-organizing clustering algorithm for functional data[J]. Communications in Statistics: Simulation and Computation, 2020, 49(5):1237-1263.
[10] 中华人民共和国环境保护部.环境空气质量指数(AQI)技术规定(试行)[Z/OL].( 2012-02-29)[2021-01-01]. https://max.book118.com/html/2017/0415/100471252.shtm. Ministry of Ecology and Environment of the Peoples Republic of China. Ambient air quality index(AQI)technical regulations(Trial)[Z/OL].( 2012-02-29)[2021-01-01]. https://max.book118.com/html/2017/0415/100471252.shtm.
[11] RAMSAY J O, SILVERMAN B W. Functional data analysis[M]. New York: Springer, 2005.
[12] JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning[M]. New York: Springer, 2013.
[13] RAMSAY J, HOOKER G, GRAVES S. Functional data analysis with R and MATLAB[M]. New York: Springer, 2009.
[14] ACQUES J, PREDA C. Funclust: a curves clustering method using functional random variables density approximation[J]. Neurocomputing, 2013, 112:164-171.
[15] JACQUES J, PREDA C. Model-based clustering for multivariate functional data[J]. Computational Statistics & Data Analysis, 2014, 71:92-106.
[16] DELAIGLE A, HALL P, BATHIA N. Componentwise classification and clustering of functional data[J]. Biometrika, 2012, 99(2):299-313.
[1] LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59.
[2] LIANG Xiao-lin, GUO Min, LI Jing. Parametric estimations for renewal-geometric process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 53-57.
[3] XU Zhong-hao, LI Tian-qi. Analysison statistical characteristic of Chinese stock market based on complex networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 41-48.
[4] HU Xue-ping, ZHANG Hong-mei. Convergence properties of the kernel-type density estimator under WOD dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 21-25.
[5] REN Peng-cheng, XU Jing, LI Xin-min. Interval estimation of VaR [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 85-90.
[6] ZHANG Ming-feng, LIU Ze-hui, ZHOU Xiao-shuang. Empirical likelihood inferences for longitudinal varying coefficient partially linear error-in-variables models with missing responses [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 127-134.
[7] GAO Ting-ting, FAN Guo-liang. Minimax estimator for multivariate linear model of regression coefficient matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 33-38.
[8] WU Da-yong, LI Feng. Maximum empirical likelihood estimation in nonlinear semiparametric regression models with missing data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 20-23.
[9] GAN Xin-jun, YANG Wei-qiang. Weight of evidence method and credit risk control [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 55-59.
[10] LI Shu-shan. Tail dependence analysis based on tail sample data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 49-54.
[11] WANG Ping-li, SHI Dong-yang. Superconvergence analysis and extrapolation of bilinear finite element for Schrödinger equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 66-71.
[12] ZHAO Pei-xin, ZHOU Xiao-shuang. Restricted statistical inference for partially linear models with error-prone covariates [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 69-74.
[13] WU Xin-ye, WU Qun-ying. The r-th rate of consistency in kernel density estimation for #br# φ-mixed random censored samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 105-110.
[14] ZHANG Liang-yong1,2, XU Xing-zhong2, DONG Xiao-fang1. Interval estimation under median ranked set sampling [J]. J4, 2013, 48(12): 107-110.
[15] . Joint test in nonlinear regression models with AR(2) random errors [J]. J4, 2009, 44(7): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!