JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 66-71.doi: 10.6040/j.issn.1671-9352.0.2014.128

Previous Articles     Next Articles

Superconvergence analysis and extrapolation of bilinear finite element for Schrödinger equation

WANG Ping-li1, SHI Dong-yang2   

  1. 1. School of Mathematics and Statistics, Xuchang University, Xuchang 461000, Henan, China;
    2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2014-03-31 Online:2014-10-20 Published:2014-11-10

Abstract: The bilinear finite element approximation is mainly discussed for Schrödinger equation. The superclose property with O(h2)order is obtained in H1-norm by use of the derivative transfering skill and the high accuracy results of the element. Also, the global superconvergence result is given in H1-norm through the interpolation post-processing technique. Furthermore, through constructing a new extrapolation scheme, the extrapolation solution with O(h3)order is deduced which is two order higher than the traditional error estimate.

Key words: dinger equation, bilinear finite element, Schrö, superconvergence, extrapolation

CLC Number: 

  • O212.6
[1] LU Tiao, CAI Wei, ZHANG Pingwen. Conservative local discontinuous Galerkin methods for time dependent Schrdinger equation[J]. International Journal of Numerical Analysis and Modeling, 2005, 2(1):75-84.
[2] LIU Yang, LI Hong, WANG Jinfen. Error estimates of H1-Galerkin mixed finite element method for Schrdinger equation[J]. Applied Mathematics-A Journal of Chinese Universities, 2009, 24(1):83-89.
[3] LIU Yang, LI Hong. H1-Galerkin mixed finite element method for the linear Schrdinger equation[J]. Advances in Mathematics, 2010, 39(4):429-442.
[4] LIN Qun, LIU Xiaoqi. Global superconvergence estimates of finite element method for Schrdinger equation[J]. Journal of Computational Mathematics, 1998, 16(6):521-526.
[5] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996. LIN Qun, YAN Ningning. The construction and analysis for high efficienency finite element method[M]. Baoding: Hebei University Press, 1996.
[6] LIN Qun, ZHANG Shuhua. An immediate analysis for global superconvergence for integro-differential equations[J]. Applications of Mathematics, 1997, 42(1):1-21.
[7] LIN Qun, ZHANG Shuhua, YAN Ningning. Asymptotic error expansion and defect correction for sobolev and viscoelasticity type equation[J]. Journal of Computattonal Mathematics, 1998, 16(1):51-62.
[8] 樊明智, 王芬玲, 石东洋. 非线性Sine-Gordon方程的双线性元分析及外推[J]. 数学的实践与认识, 2012, 42(11):205-213. FAN Mingzhi, WANG Fenling, SHI Dongyang. The bilinear element analysis and extrapolation for nonlinear Sine-Gordon equation[J]. Mathematics in Practice and Theory, 2012, 42(11):205-213.
[9] 史艳华, 石东洋. 非对称不定问题双线性元的超收敛及外推[J]. 应用数学, 2013, 26(1):220-227. SHI Yanhua, SHI Dongyang. Superconvergence and extrapolation of bilinear finite element method for nonsymmetric and indefinite problem[J]. Mathematica Applicata, 2013, 26(1):220-227.
[10] SHI Dongyang, ZHU Huiqing. The superconvergence analysis of an anisotropic finite element[J]. Journal of Systems Science and Complexity, 2005, 18(4):478-478.
[11] LIN Qun, LIN Jiafu. Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes[J]. Numerical Methods for Partial Differential Equations, 2007, 23(5):960-967.
[12] YAN Ningning. Superconvergence analysis and a posteriori error estimation in finite element methods[M]. Beijing: Science Press, 2008.
[1] HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71.
[2] ZHANG Hou-chao, ZHU Wei-jun, WANG Jun-jun. Superconvergence and extrapolation of a lower order mixed finite method for nonlinear fourth-order hyperbolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 35-46.
[3] FAN Ming-zhi, WANG Fen-ling, SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 78-89.
[4] DENG Li-hua, DENG Yu-ping, Louis W. Shapiro. The Riordan group and symmetric lattice paths [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 82-89.
[5] CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62.
[6] ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28-35.
[7] SHI Yan-hua1, SHI Dong-yang2*. The quasi-Wilson nonconforming finite element approximation to  pseudo-hyperbolic equations [J]. J4, 2013, 48(4): 77-84.
[8] WANG Fen-ling1, SHI Dong-wei2. High analysis of Hermite-type rectangular element for nonlinear hyperbolic equation [J]. J4, 2012, 47(10): 89-96.
[9] NIU Yu-qi1, WANG Fen-ling1, SHI Dong-wei2. Higher accuracy analysis for the bilinear element solution of  nonlinear viscoelasticity type equations [J]. J4, 2011, 46(8): 31-37.
[10] LUO Ping. Alternating direction preconditioned iteration for backward Euler-Galerkin methods for groundwater pollution problem in aggregated porous media [J]. J4, 2011, 46(2): 70-77.
[11] QIAN Ling-zhi1, GU Hai-bo2. High order compact scheme combined with extrapolation technique for solving convection-diffusion equations [J]. J4, 2011, 46(12): 39-43.
[12] LU Yao1, LI De-sheng2, YANG Yang1. The Fourier spectral approximation for nonlinear SchrÖdinger equation [J]. J4, 2011, 46(1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!