JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 66-80.doi: 10.6040/j.issn.1671-9352.0.2020.711
LI You-ling, WANG Xuan*
CLC Number:
[1] BORINI S, PATA V. Uniform attractors for a strongly damped wave equation with linear memory[J]. Asymptotic Analysis, 1999, 20(3):263-277. [2] GATTI S, MIRANVILLE A, PATA V, et al. Attractors for semilinear equations of viscoelasticity with very low dissipation[J]. Rocky Mountain Journal of Mathematics, 2008, 38(4):1117-1138. [3] PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 11(2):505-529. [4] SUN Chunyou, CAO Daomin, DUAN Jinqiao. Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor[J]. Discrete and Continuous Dynamical Systems: Series B, 2008, 9(3):743-761. [5] AIFANTIS E C. On the problem of diffusion in solids[J]. Acta Mechanica, 1980, 37(3):265-296. [6] CHEN P J, GURTIN M E. On a theory of heat conduction involving two temperatures[J]. Zeitschrift Angewandte Mathematik und Physik, 1968, 19(4):614-627. [7] CHEPYZHOV V V, VISHIK M I. Attractors for equations of mathematical physics[M].[S.1.] : American Mathematical Society, 2002. [8] HALE J K. Asymptotic behavior of dissipative systems[M].[S.1.] : American Mathematical Society, 1988. [9] KLOEDEN P E. Upper semicontinuity of attractors of delay differential equations in the delay[J]. Bulletin of the Australian Mathematical Society, 2006, 73(2):299-306. [10] KLOEDEN P E, VALERO J D. Attractors of weakly asymptotically compact set-valued dynamical systems[J]. Set-Valued Analysis, 2005, 13(4):381-404. [11] KLOEDEN P E, SIEGMUND S. Bifurcation and continuous transitions of attractors in autonomous and nonautonomous systems[J]. International Journal of Bifurcation and Chaos, 2005, 15(3):743-762. [12] KLOEDEN P E, MARIN-RUBIO P. Weak pullback attractors of nonautonomous difference inclusions[J]. Journal of Difference Equations and Applications, 2003, 9(5):489-502. [13] KLOEDEN P E. Pullback attractors of nonautonomous semidynamical systems[J]. Stochastics and Dynamics, 2003, 3(1):101-112. [14] ROGER T. Infinite-dimensional dynamical systems in mechanics and physics[M]. New York: Springer-Verlag, 1997. [15] SUN Chunyou, WANG Suyun, ZHONG Chengkui. Global attractors for a nonclassical diffusion equation[J]. Acta Mathematica Sinica, 2007, 23(7):1271-1280. [16] SUN Chunyou, YANG Meihua. Dynamics of the nonclassical diffusion equation[J]. Asymptotic Analysis, 2008, 59(1):51-81. [17] WANG Suyun, LI Desheng, ZHONG Chengkui. On the dynamics of a class of nonclassical parabolic equations[J]. Journal of Mathematical Analysis and Applications, 2006, 317(2):565-582. [18] XIAO Yuelong. Attractors for a nonclassical diffusion equation[J]. Acta Mathematicae Applicatae Sinica, 2002, 18(2):273-276. [19] WU Hongqing, ZHANG Zhuanye. Asymptotic regularity for the nonclassical diffusion equation with lower regular foring term[J]. Dynamical Systems, 2011, 26(4):391-400. [20] WANG Xuan, ZHONG Chengkui. Attractors for the non-autonomous nonclassical diffusion equations with fading memory[J]. Nonlinear Analysis, 2009, 71(11):5733-5746. [21] 汪璇, 居文超, 钟承奎. 具有衰退记忆的非自治非经典扩散方程的强吸引子[J]. 数学年刊, 2013, 34(6):671-688. WANG Xuan, JU Wenchao, ZHONG Chengkui. Strong attractors for the non-autonomous nonclassical diffusion equations with fading memory[J]. Chinese Annals of Mathematics, 2013, 34(6):671-688. [22] DAFERMOS C M. Asymptotic stability in viscoelasticity[J]. Archive for Rational Mechanics and Analysis, 1970, 37(4):297-308. [23] PATA V, SQUASSINA M. On the strongly damped wave equation[J]. Communications in Mathematical Physics, 2005, 253(3):511-533. [24] ZELIK S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth expo-nent[J]. Communications on Pure and Applied Analysis, 2004, 3(4):921-934. [25] ARRIETA J, CARVALHO A N, HALE J K. A damped hyperbolic equation with critical exponent[J]. Communications in Partial Differential Equations, 1992, 17(5/6):841-866. [26] 汪璇,马巧珍. 带记忆的非自治黏弹性棒方程的吸引子的存在性(英文)[J]. 山东大学学报(理学版), 2010, 45(12):67-74. WANG Xuan, MA Qiaozhen. Existence of attractors for the non-autonomous viscoelastic rod equations with memory[J]. Journal of Shandong University(Natural Science), 2010, 45(12):67-75. |
[1] | . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63. |
[2] | WANG Xuan1,2, MA Qiao-zhen1. Existence of attractors for the non-autonomous viscoelastic rod equations with memory [J]. J4, 2010, 45(12): 67-74. |
|