JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 57-63.doi: 10.6040/j.issn.1671-9352.0.2018.003
Previous Articles Next Articles
CLC Number:
[1] MICHAEL J, ZIEMER W. Interior regularity for solutions to obstacle problems[J]. Nonlinear Analysis, 1986, 10(12): 1427-1448. [2] CHOE H J, LEWIS J. On the obstacle problem for quasilinear elliptic equations of p Laplacian type[J]. SIAM Journal on Mathematical Analysis, 1991, 22(3): 623-638. [3] CHOE H J. A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems[J]. Archive for Rational Mechanics and Analysis, 1991, 114(4): 383-394. [4] DUZAAR F, GASTEL A. Nonlinear elliptic systems with Dini continuous coefficients[J]. Archiv der Mathematik, 2002, 78(1): 58-73. [5] QIU Yalin. Optimal partial regularity of second order nonlinear elliptic systemswith Dini continuous coefficients for the superquadratic case[J]. Nonlinear Analysis, 2012, 75(8): 3574-3590. [6] BÖGELEIN V, DUZAAR F, HABERMANN J, et al. Partial Hölder continuity for discontinuous elliptic problems with VMO-coefficients[J]. Proceedings of the London Mathematical Society, 2011, 103(3):371-404. [7] DUZAAR F, GROTOWSKI J F. Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation[J]. Manuscripta Mathematica, 2000, 103(3): 267-298. [8] DUZAAR F, MINGIONE G. The p-harmonic approximation and the regularity of p-harmonic maps[J]. Calculus of Variations and Partial Differential Equations, 2004, 20(3): 235-256. [9] DUZAAR F, MINGIONE G. Regularity for degenerate elliptic problems via p-harmonic approximation[J]. Annales de l'Institut Henri Poincaré(C)Non, Analyse Linear, 2004, 21(5): 735-766. [10] YU Haiyan, ZHENG Shenzhou. Optimal partial regularity for quasilinear elliptic systems with VMO coefficients based on A-harmonic approximations[J]. Electronic Journal of Differential Equations, 2015, 2015(16): 1-12. [11] CHEN Yazhe, WU Lancheng. Second order elliptic equations and elliptic systems[M]. Rhode Island: American Mathematical Society, 1998. [12] KINNUNEN J, ZHOU Shulin. A local estimate for nonlinear equations with discontinuous coefficients[J]. Communications in Partial Differential Equations, 1999, 24(11/12): 2043-2068. |
[1] | ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71. |
[2] | LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60. |
[3] | DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84. |
[4] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[5] | ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42. |
[6] | DUAN Shuang-shuang, QIAN Yuan-yuan. The pointwise estimates of solutions to the Cauchy problem of Keller-Segel equations with cross-diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 40-47. |
[7] | DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60. |
[8] | LI Yu, LIU Xi-qiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 77-84. |
[9] | ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97. |
[10] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[11] | SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47. |
[12] | LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie. Bifurcation structures for the 2-D Lengyel-Epstein system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 74-78. |
[13] | LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui. (Full)oscillatory problems of certain quasilinear hyperbolic systems with damping term [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 73-77. |
[14] | CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134. |
[15] | DONG Jian-wei, LOU Guang-pu, WANG Yan-ping. Uniqueness of stationary solutions to a simplified energy-transport model for semiconductors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 37-41. |
|