JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (1): 88-97.doi: 10.6040/j.issn.1671-9352.0.2016.286

Previous Articles     Next Articles

Turing instability induced by cross-diffusion in a three-species food chain model

ZHANG Dao-xiang1,2, ZHAO Li-xian1, HU Wei1   

  1. 1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241002, Anhui, China;
    2. Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland
  • Received:2016-06-22 Online:2017-01-20 Published:2017-01-16

Abstract: This paper considers a strong coupled cross-diffusion system about a three-species food chain model. We first prove that the unique positive equilibrium solution is globally linearly stable for the ODE system and remains globally linearly stable when the reaction-diffusion system without cross-diffusion by constructing Lyapunov functions. Then we use the Routh-Hurwitz criterion and Descartes' rule to illustrate that the unique positive equilibrium solution becomes linearly unstable only when the cross-diffusion plays a role in this reaction-diffusion system. Finally, numerical simulations are performed to test our theoretical results by means of Matlab. We can obtain different types of patterns including spotted, striped and mixture patterns.

Key words: cross-diffusion, turing instability, turing pattern, food chain model

CLC Number: 

  • O175.21
[1] 李海侠,李艳玲. 一类带B-D反应项的食物链模型正解的稳定性和唯一性[J]. 山东大学学报(理学版), 2013, 48(9):103-110. LI Haixia, LI Yanling. Stability and uniqueness of positive solutions for a food chain model with B-D functional response [J]. Journal of Shandong University(Natural Science), 2013, 48(9):103-110.
[2] 杨斌, 王静. 具有 Holling Ⅳ 型功能性反应的非自治三种群食物链模型的周期解[J]. 东北师大学报(自然科学版), 2012, 44(1):10-15. YANG Bin, WANG Jing. Periodic solution of a nonautonomous three-species food-chain model with the Holling Ⅳ functional response[J]. Journal of Northeast Normal University(Natural Science), 2012, 44(1):10-15.
[3] 王育全, 刘来福. 具有 Monod-Haldane功能反应的一类食物链模型的动力学行为[J]. 数学物理学报, 2007, 27(1):79-89. WANG Yuquan, LIU Laifu. On the dynamics of a food chain with Monod-Haldane functional response[J]. Acta Mathematics Scientia, 2007, 27(1):79-89.
[4] LV S, ZHAO M. The dynamic complexity of a three species food chain model[J]. Chaos, Solitons and Fractals, 2008, 37(5):1469-1480.
[5] MCCANN K, YODZIS P. Bifurcation structure of a three-species food-chain model[J]. Theoretical population biology, 1995, 48(2):93-125.
[6] 屈菲. 带扩散项的三级营养食物链模型斑图的存在性[D]. 兰州:西北师范大学硕士学位论文, 2014. QU Fei. The existence of stationary patterns for a tritrophic food chain model with diffusion[D]. Lanzhou: Masters Degree Thesis of Northwest Normal University, 2014.
[7] 伏升茂, 温紫娟, 崔尚斌. 三种群食物链交错扩散模型的整体解[J]. 数学学报, 2007, 50(1):75-89. FU Shengmao, WEN Zijuan, CUI Shangbin. On global solutions for the three-species food-chain model with cross-diffusion[J]. Acta Mathematica Sinica, 2007, 50(1):75-89.
[8] PARSHAD R D, KUMARI N, KASIMOV A R, et al. Turing patterns and long-time behavior in a three-species food-chain model[J]. Mathematical Biosciences, 2014, 254(8):83-102.
[9] TANG Xiaosong, SONG Yongli. Cross-diffusion induced spatiotemporal patterns in a predator—prey model with herd behavior[J]. Nonlinear Analysis: Real World Applications, 2015, 24:36-49.
[10] TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal of London. Series B, Biological Sciences, 1952, 237(64):37-72.
[11] LING Zhi, ZHANG Lai, LIN Zhigui. Turing pattern formation in a predator—prey system with cross diffusion[J]. Applied Mathematical Modelling, 2014, 38(21):5022-5032.
[12] PETER Y H P, WANG M X. Strategy and stationary pattern in a three-species predator-prey model[J]. Journal of Differential Equations, 2004, 200(2):245-273.
[13] LI Jianjun, GAO Wenjie. A strongly coupled predator-prey system with modified Holling-Tanner functional response[J]. Computer and Mathematics with Applications, 2010, 60(7):1908-1916.
[14] LOTFI E M, MAZIANE M, HATTAF K, et al. Partial differential equations of an epidemic model with spatial diffusion[J]. International Journal of Partial Differential Equations, 2014(2014):186437-186437.6
[15] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散[J]. 物理学报, 2014, 63(23):238202. HU Wenyong, SHAO Yuanzhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity [J]. Journal of Physics, 2014, 63(23): 238202.
[16] CHIA-Ven Pao. Nonlinear Parabolic and Elliptic Equations[M] , New York: Plenum Press, 1992.
[17] YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 1990.
[18] 马知恩, 周义仓. 种群生态学的数学建模与研究[M]. 安徽: 安徽教育出版社, 1996. MA Zhien, ZHOU Yicang. Mathematical modeling and research of population ecology[M]. Anhui: Anhui Education Press, 1996.
[19] Hale J K. Ordinary differential equations[M]. FL:Krieger, Malabar, 1980.
[1] FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122.
[2] ZHANG Li-na, WU Shou-yan. Global behavior of solutions for a modified LeslieGower #br# predator-prey system with diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 86-91.
[3] LI Hai-xia1,2, LI Yan-ling1. Stability and uniqueness of positive solutions for  a food chain  model with B-D functional response [J]. J4, 2013, 48(09): 103-110.
[4] DONG Chun-yan, FU Sheng-mao. The existence of non-constant positive steady state of an epidemic model for pest control [J]. J4, 2011, 46(3): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!