JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (8): 74-78.doi: 10.6040/j.issn.1671-9352.0.2015.450

Previous Articles     Next Articles

Bifurcation structures for the 2-D Lengyel-Epstein system

LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, Gansu, China
  • Received:2015-09-17 Online:2016-08-20 Published:2016-08-08

Abstract: The bifurcation problem is considered for the Lengyel-Epstein model by the local bifurcation method in R2. Local bifurcation branches of stationary solutions are constructed, and the directions of the branches near the bifurcation points are obtained.

Key words: bifurcation, non-constant positive steady-states, Lengyel-Epstein system

CLC Number: 

  • O175.26
[1] TURING A M. The chemical basis of morphogenesis[J]. Phil Trans Roy Soc Londonser, 1952, B237:37-72.
[2] CASTETS V, DULOS E, BOISSONADE J, et al. Experimental evidence of a sustained Turing-type equilibrium chemical pattern[J]. Phys Rev Lett, 1990, 64:2953-2956.
[3] LENGYEL I, EPSTEIN I R. Modeling of turing structures in the chlorite-iodidemalonic acid-starch reaction system[J]. Science, 1991, 251:650-652.
[4] JANG Jaeduck, NI Weiming, TANG Moxun. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model[J]. J Dyn Diff Equ, 2005, 16(2):297-320.
[5] DU Linglong, WANG Mingxin. Hopf bifurcation analysis in the 1-D Lengyel-Epsteinreaction-diffusion model[J]. J Math Anal Appl, 2010, 366:473-485.
[6] WEI Minghua, WU Jianhua, GUO Gaihui. Turing structures and stability for the 1-D Lengyel-Epstein system[J]. J Math Chem, 2012, 50:2374-2396.
[7] JIN Jianyin, SHI Junping, WEI Junjie, et al. Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction[J]. Rocky Mt J Math, 2013, 43(5):1637-1674.
[8] KAR S, BHATTACHARJEE J K, RAY D D. A model reaction-diffusion system under spatial perturbation: theoretical and numerical investigation[J]. Eur Phys J, 2005, 43B:109-114.
[9] NI Weiming, TANG Moxun. Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Trans Am Math Soc, 2005, 357:3953-3969.
[10] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. J Funct Anal, 1997, 8:321-340.
[1] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[2] DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84.
[3] ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94.
[4] BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82.
[5] SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59.
[6] LI Xiao-yan, XU Man. Existence and multiplicity of nontrivial solutions of Dirichlet problems for second-order impulsive differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 29-35.
[7] LI Hai-xia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 88-94.
[8] WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94.
[9] ZHANG Lu, MA Ru-yun. Bifurcation structure of asymptotically linear second-order #br# semipositone discrete boundary value problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 79-83.
[10] FENG Xiao-zhou1,2, NIE Hua2. Bifurcation solutions and stability of a predator-prey system with predator saturation and competition [J]. J4, 2012, 47(5): 103-107.
[11] CHEN Si-yang, LIU Xiao-na. Stability and bifurcation analysis of the model with interference and piecewise constant variables [J]. J4, 2012, 47(11): 109-118.
[12] ZHANG Wei-qiang, LIU Yang-zheng*. Generation and circuit implementation of a unified hyperchaotic system [J]. J4, 2011, 46(7): 30-34.
[13] ZHANG Zhi-Reng. The uniqueness of the limit cycle and the bifurcation of singular  points for a class of polynomial systems [J]. J4, 2009, 44(9): 90-92.
[14] HOU Qiang, JIN Zhen. Analysis of a HollingTanner model with ratiodependence
incorporating a prey refuge
[J]. J4, 2009, 44(3): 56-60 .
[15] LIU Hua ,LIU Zhi-guang ,SU Min ,LI Zi-zhen , . Clumping effect in a host—parasitoid interaction model [J]. J4, 2008, 43(8): 31-34 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!