JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 72-82.doi: 10.6040/j.issn.1671-9352.0.2016.614
Previous Articles Next Articles
BAI Bao-li1, ZHANG Jian-gang1*, DU Wen-ju2, YAN Hong-ming3
CLC Number:
[1] 石栋梁.两类带有时滞的非线性传染病模型的定性分析[D].湖北:湖北师范大学,2016. SHI Dongliang. Stability analysis of two kinds of nonlinear epidemic model with time delay[D]. Hubei: Hubei Normal University, 2016. [2] 王丽敏,刘熙娟.一类具有时滞和阶段结构的SIR流行病模型分析[J].云南民族大学学报(自然科学版),2015,24(3):211-216. WANG Limin, LIU Xijuan. Analysis of an SIR epidemic model with time delay and strage-structured characteristics[J]. Journal of Yunnan Nationalities University(Natural Sciences Edition), 2015, 24(3):211-216. [3] 李甜甜.几类带有时滞的传染病模型稳定性分析[D].山西:中北大学,2014. LI Tiantian. Stability analysis of a few kind of epidemic model with Time Delay[D]. Shanxi: North University of China, 2014. [4] LIN Qun, JIANG Daqing. Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40(12):89-99. [5] CHANG Zhengbo, MENG Xinzhu. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates[J]. Physica A, 2017, 472(4):103-116. [6] 朱位秋.非线性随机动力学与控制-Hamilton理论体系框架[M].北京:科学出版社,2003. ZHU Weiqiu. Nonlinear stochastic dynamics and control-Hamilton theory system framework[M].Beijing:Science Press, 2003. [7] JIA Wantao, ZHU Weiqiu. Stochastic averaging of quasi-partially integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations[J].Physica A, 2014, 398(3):125-144. [8] LIU Weiyan, ZHU Weiqiu.Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises[J].International Journal of Nonlinear Mechanics, 2014, 58(1):191-198. [9] LIU Weiyan, ZHU Weiqiu. Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises[J].International Journal of Nonlinear Mechanics, 2014, 67(12):52-62. [10] 李会民,王洪礼.随机激励下藻类生态系统的分岔行为[J].天津大学学报,2007,40(12):1507-1510. LI Huimin, WANG Hongli. Bifurcation of the algal ecosystem with random excitation[J].Journal of Tianjin University, 2007, 40(12):1507-1510. [11] HUANG Zaitang, YANG Qigui, CAO Junfei. The stochastic stability and bifurcation behavior of an internet congestion control model[J].Mathematical and Computer Modeling, 2011, 54(11):1954-1955. [12] LIM Y, CAI G. Probabilistic structural dynamics[M]. McGraw-Hill: Mcgraw-hill Professional Publishing, 2004. [13] ARNOLD L. Random dynamical systems[M]. New York: Springer, 1998. [14] HAS'MINSKII R Z.On the principle of averaging for Ito stochastic differential equations[C]. Prague: Kybernetika, 1968: 260-279. [15] 傅衣铭.非线性随机参数系统的动力学与控制研究[D].陕西:西北工业大学,2007. FU Yimin.The dynamics of nonlinear stochastic parameter system and control research[D]. Shanxi: Northwestern Polytechnical University, 2007. [16] NAMACHCHIVAYA N.Stochastic bifurcation[J].Appl Math Comput, 1990, 38(2):101-159. |
[1] | ZHANG Dao-xiang, HU Wei, TAO Long, ZHOU Wen. Dynamics of a stochastic SIS epidemic model with different incidences and double epidemic hypothesis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 10-17. |
|