JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (3): 51-59.doi: 10.6040/j.issn.1671-9352.0.2015.212
Previous Articles Next Articles
SHI Xue-wei, JIA Jian-wen*
CLC Number:
[1] 马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社,2012. MA Zhien, ZHOU Yicang, WANG Wendi, et al. The mathematical modeling and research on dynamics of epidemic[M]. Beijing: Science Press, 2012. [2] DONOFRIO A, MANFREDI P, SALINELLI E. Bifurcation thresholds in a SIR model with information dependent vaccination[J]. Mathematical Modelling of Natural Phenomena, 2007, 2(1):26-43. [3] DONOFRIO A, MANFREDI P, SALINELLI E. Vaccinating behaviour, information and the dynamics of SIR vaccine preventable diseases[J]. Theor Popul Biol, 2007, 71(3):301-317. [4] LIN Yuguo, JIANG Daqing, LIU Taihui. Nontrivial periodic solution of a stochastic epidemic model with seasonal variation[J]. Applied Mathematics Letters, 2015, 45(1):103-107. [5] MUROYA Y, ENATSU Y, KUNIYA T. Global stability of extended multi-group SIR epidemic model with patches through migration and cross patch infection[J]. Acta Math Sci, 2013, 33(2):341-361. [6] BUONOMO B, DONOFRIO A, LACITIGNOLA D. Global stability of an SIR epidemic model with information dependent vaccination[J]. Mathematical Biosciences, 2008, 216(1):9-16. [7] PANG Jianhua, CUI Jingan, HUI Jing. Rich dynamics of epidemic model with sub-optimal immunity and nonlinear recovery rate[J]. Mathematical and Computer Modelling, 2011, 54(1/2):440-448. [8] MUROYA Y, LI H X, KUNIYA T. Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates[J]. J Math Anal Appl, 2014, 410(2):719-732. [9] HAO Lijie, JIANG Guirong, LIU Suyu, et al. Global dynamics of an SIRS epidemic model with saturation incidence rate[J]. BioSystems, 2013, 114(1):56-63. [10] ELAIW A M, ALSHAMRANI N H. Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal[J]. Nonlinear Anal: Real World Appl, 2015, 26:161-190. [11] ZHANG Xiaobing, HUO Haifeng, XIANG Hong, et al. An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate[J]. Nonlinear Analysis: Hybrid Systems, 2013, 8(5):13-21. [12] KAR T K, PRASANTA K M. Global dynamics and bifurcation in delayed SIR model[J] , Nonlinear Anal: Real World Appl, 2011, 12(4):2058-2068. [13] YAN Caijuan, JIA Jianwen. Dynamics of an SIR epidemic model with information variable and limited medical resources revisited[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 861710.1-861710.11. [14] GUCKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M]. New York: Springer-Verlag, 1983: 117-156. [15] LI M, MULDOWNEY J S. A geometric approach to global-stability problems[J]. SIAM J Math Anal, 1996, 27(4):1070-1083. |
[1] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[2] | YANG Jun-xian, XU li*. Global stability of a SIQS epidemic model with #br# nonlinear incidence rate and time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 67-74. |
[3] | JU Pei-jun. Sufficient and necessary conditions for global stability of generalized Lorenz system and its applications to chaos control [J]. J4, 2012, 47(10): 97-101. |
[4] | DONG Chun-yan, FU Sheng-mao. The existence of non-constant positive steady state of an epidemic model for pest control [J]. J4, 2011, 46(3): 80-88. |
|