JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 81-86.doi: 10.6040/j.issn.1671-9352.0.2020.673
WANG Xiu-li
CLC Number:
[1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1):267-288. [2] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476):1418-1429. [3] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360. [4] ZHANG C H. Nearly unbiased variable selection under minimax concave penalty[J]. The Annals of Statistics, 2010, 38(2):894-942. [5] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2):407-451. [6] HUNTER D R, LI R. Variable selection using MM algorithms[J]. The Annals of Statistics, 2005, 33(4):1617-1642. [7] ZOU H, LI R. One-step sparse estimates in nonconcave penalized likelihood models[J]. The Annals of Statistics, 2008, 36(4):1509-1533. [8] BREHENY P, HUANG J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[J]. The Annals of Applied Statistics, 2011, 5(1):232-253. [9] DE PIERRO A R. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[J]. IEEE Transactions on Medical Imaging, 1995, 14(1):132-137. [10] BECKER M P, YANG I, LANGE K. EM algorithms without missing data[J]. Statistical Methods in Medical Research, 1997, 6(1):38-54. [11] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464. [12] WANG H, LI R, TSAI C L. Tuning parameter selectors for the smoothly clipped absolute deviation method[J]. Biometrika, 2007, 94(3):553-568. [13] XIONG S, DAI B, HULING J, et al. Orthogonalizing EM: a design-based least squares algorithm[J]. Technometrics, 2016, 58(3):285-293. |
[1] | . Equilibrium decisions of a two-layer supply chain network considering retailers horizontal fairness [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 69-82. |
[2] | . Interval algorithm for mixed integer nonlinear two-level programming problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 9-17. |
[3] | LI Shuang-an, CHEN Feng-hua, ZHAO Yan-wei. The application of a supermemory gradient method for large-scale signal reconstruction problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 65-73. |
[4] | CUI An-gang, LI Hai-yang. Equivalence between the affine matrix rank minimization problem and the unconstrained matrix rank minimization problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 86-89. |
[5] | CHEN Jie, LÜ Yu-hua. Discounted penalty function for a thinning risk model with dividend [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 78-83. |
[6] | GAN Xin-jun, YANG Wei-qiang. Weight of evidence method and credit risk control [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 55-59. |
[7] | LI Feng1, LU Yi-qiang2. Asymptotics for the LASSO estimator for partially linear models [J]. J4, 2012, 47(3): 93-97. |
[8] | DING Wei-ping1,2,3, WANG Jian-dong2, DUAN Wei-hua2, SHI Quan1. Research of cooperative PSO for attribute reduction optimization [J]. J4, 2011, 46(5): 97-102. |
[9] | WANG Shu-yun1, SONG Yun-sheng2. Bayesian variable selection based on AIC criteria in linear models [J]. J4, 2010, 45(6): 43-45. |
[10] | HUA Zhao-xiu,NIU Ming-fei . A threshold dividend strategy in a risk model with inter-claim-dependent claim sizes [J]. J4, 2008, 43(10): 91-96 . |
|