JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (2): 72-77.doi: 10.6040/j.issn.1671-9352.0.2021.603
LIU Can
CLC Number:
[1] DELIGNE P. La conjecture de Weil. I[J]. Institut des Hautes Études Scientifiques. Publications Mathématiques, 1974, 43:273-307. [2] HECKE E. Theorie der eisensteinschen reihen höherer stufe und ihre anwendung auf funktionentheorie und arithmetik[J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1927, 5(1):199-224. [3] FOMENKO O M. Identities involving the coefficients of automorphic L-functions[J]. Journal of Mathematical Sciences, 2006, 133(6):1749-1755. [4] FOMENKO O M. Mean value theorems for automorphic L-functions[J]. Algebra i Analiz, 2007, 19(5):246-264. [5] TANG H C. Estimates for the Fourier coefficients of symmetric square L-functions[J]. Archiv der Mathematik, 2013, 100(2):123-130. [6] HE X G. Integral power sums of Fourier coefficients of symmetric square L-functions[J]. Proceedings of the American Mathematical Society, 2019, 147(7):2847-2856. [7] RANKIN R A. Contributions to the theory of Ramanujans function τ(n) and similar arithemtical functions: I. The zeros of the function ∑∞n=1τ(n)/ns on the line Rs=13/2. II. The order of the Fourier coefficients of the integral modular forms[J]. Proceedings of the Cambridge Philosophical Society, 1939, 35:351-372. [8] SELBERG A. Bemerkungen über eine dirichletsche reihe, die mit der theorie der modulformen nahe verbunden ist[J]. Archiv for Mathematik og Naturvidenskab, 1940, 43:47-50. [9] LÜ G S, SANKARANARAYANAN A. On the coefficients of triple product L-functions[J]. The Rocky Mountain Journal of Mathematics, 2017, 47(2):553-570. [10] LIU H F. Mean value estimates of the coefficients of product L-functions[J]. Acta Mathematica Hungarica, 2018, 156(1):102-111. [11] LIU H F, ZHANG R. Some problems involving Hecke eigenvalues[J]. Acta Mathematica Hungarica, 2019, 159(1):287-298. [12] NEWTON J, THORNE J A. Symmetric power functoriality for holomorphic modular forms[J/OL]. [2019-12-24] (2021-08-25). https://arxiv.org/abs/1912.11261v3 [13] BOURGAIN J. Decoupling, exponential sums and the Riemann zeta function[J]. Journal of the American Mathematical Society, 2017, 30(1):205-224. [14] IVIC A. Exponent pairs and the zeta function of Riemann[J]. Studia Sci Math Hungar, 1980, 15(1/3):157-181. [15] NUNES R M. On the subconvexity estimate for self-dual GL(3)L-functions in the t-aspect[J/OL].[2017-3-13] (2020-11-28). https://arxiv.org/abs/1703.04424v1 [16] PERELLI A. General L-functions[J]. Annali di Matematica Pura ed Applicata, 1982, 130(4):287-306. |
[1] | DUAN Ran. Counting solutions of a binary quadratic congruence equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 108-120. |
[2] | WEI Hong-bin. The Omega result of coefficients of automorphic L-functions over different sparse sequences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 102-105. |
[3] | ZHANG De-yu and ZHAI Wen-guang . On certain divisor sum over squarefull integers [J]. J4, 2006, 41(2): 63-68 . |
[4] | LI Jin-hong, . The abstract prime number theorem [J]. J4, 2008, 43(3): 70-74 . |
[5] | XU Yun-fei and Lǔ . Sums of nine almost equal prime cubes [J]. J4, 2006, 41(2): 59-62 . |
[6] | WANG Xiao. A note on the hybrid power mean of the character sums and exponential sums [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 97-101. |
[7] | ZHANG Jia-fan, LYU Xing-xing. Some new identities on Laguerre polynomials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 85-91. |
|