JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (12): 64-70.doi: 10.6040/j.issn.1671-9352.0.2022.044

Previous Articles    

Linear operators preserving transitive closures of matrices over the binary Boolean semiring

DENG Wei-na1,2, ZHAO Xian-zhong1*   

  1. 1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China;
    2. School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, Henan, China
  • Published:2022-12-05

Abstract: The linear operators which preserve transitive closures of matrices over the binary Boolean semiring are studied, the characterizations of invertible linear operators which preserve transitive closures of matrices are given, and it is shown that the strong preservers are invertible when the order of the matrices n≥2.

Key words: binary Boolean semiring, matrix, linear operator, transitive closure

CLC Number: 

  • O151.21
[1] BEASLEY L B, GUTERMAN A E. Linear preservers of extremes of rank inequalities over semirings: the factor rank[J]. Journal of Mathematical Sciences(New York), 2005, 131(5):5919-5938.
[2] BEASLEY L B, PULLMAN N J. Linear operators preserving idempotent matrices over fields[J]. Linear Algebra and its Applications, 1991, 146:7-20.
[3] BEASLEY L B, PULLMAN N J. Linear operators strongly preserving idempotent matrices over semirings[J]. Linear Algebra and its Applications, 1992, 160:217-229.
[4] SONG S Z, KANG K T. Linear maps that preserve commuting pairs of matrices over general Boolean algebra[J]. Journal of the Korean Mathematical Society, 2006, 43(1):77-86.
[5] SONG S Z, KANG K T, BEASLEY L B. Idempotent matrix preservers over Boolean algebras[J]. Journal of the Korean Mathematical Society, 2007, 44(1):169-178.
[6] KANG K T, SONG S Z, JUN Y B. Linear operators that strongly preserve regularity of fuzzy matrices[J]. Mathematical Communications, 2010, 15(1):243-254.
[7] GUTERMAN A, JOHNSON M, KAMBITES M. Linear isomorphisms preserving Greens relations for matrices over anti-negative semifields[J]. Linear Algebra and its Applications, 2018, 545:1-14.
[8] GUTERMAN A, JOHNSON M, KAMBITES M, et al. Linear functions preserving Greens relations over fields[J]. Linear Algebra and its Applications, 2021, 611:310-333.
[9] GUTERMAN A, KREINES E, THOMASSEN C. Linear transformations of tropical matrices preserving the cyclicity index[J]. Special Matrices, 2021, 9(1):112-118.
[10] 吴校贵, 张建华. 全矩阵代数上保 Jacobi 恒等式的线性映射[J]. 山东大学学报(理学版), 2009, 44(1):49-52. WU Xiaogui, ZHANG Jianhua. Linear maps preserving Jacobi identity on the full matrix algebras[J]. Journal of Shandong University(Natural Science), 2009, 44(1):49-52.
[11] 任苗苗, 邵勇, 赵宪钟. 保持两类特殊半环上矩阵{1}-逆的线性算子[J]. 西北大学学报(自然科学版),2012, 42(1):7-11. REN Miaomiao, SHAO Yong, ZHAO Xianzhong. Linear operators preserving {1}-inverses of matrices over two special classes of semirings[J]. Journal of Northwest University(Natural Science Edition), 2012, 42(1):7-11.
[12] 杨阳, 任苗苗, 邵勇. 保持 ai-半环上矩阵的Moore-Penrose逆的线性算子[J].计算机工程与应用, 2015, 51(8):37-41. YANG Yang, REN Miaomiao, SHAO Yong. Linear operators preserving Moore-Penrose inverses of matrices over ai-semirings[J]. Computer Engineering and Applications, 2015, 51(8):37-41.
[13] DENG Weina, REN Miaomiao, YU Baomin. Linear preservers for matrices over a class of semirings[J/OL]. Linear and Multilinear Algebra, 2021[2022-03-28]. https://doi.org/10.1080/03081087.2021.1969328.
[14] GOLAN J S. Semirings and their applications[M]. Dordrecht: Springer, 1999.
[1] HU Yu-wen, XU Jiu-cheng, XU Tian-he. Bernoulli shift of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 13-20.
[2] LI Xin-yu, FAN Hui, LIU Jing-lei. Robust clustering based on adaptive graph regularization and low-rank matrix decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 21-38.
[3] LU Peng-li, LUAN Rui, GUO Yu-hong. On path(signless)Laplacian spectral radius and energy of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 14-21.
[4] LIU Li-fang, MA Yuan-yuan. Cross-modal information retrieval method based on multi-view symmetric nonnegative matrix factorization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 65-72.
[5] ZHANG Hai-dong, WANG Wei-zhong. Hermitian-general Randic quasi-Laplacian matrix and Hermitian-general Randic incidence energy of mixed graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 78-84.
[6] TANG Guo-liang, CHEN Ling-qiao, DI Zhen-xing. Equivalent characterizations of strong right mininjective, semiperfect, right PF and clean triangular matrix rings of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 8-13.
[7] CUI Qian, GONG Chun-mei, WANG Hui. (~)-Good congruences on Rees matrix semigroups over semiadequate semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 61-66.
[8] WU Yi-fan, WANG Guang-fu. Extremal graphs on distance spectral radius of polyomino chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 84-91.
[9] YANG Yin-yin, ZHANG Cui-ping. Gorenstein FP-injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 38-44.
[10] WANG Jing, GONG Chun-mei. Tropical matrix semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 50-55.
[11] FEI Xiu-hai, ZHANG Hai-fang. A class of non-global nonlinear triple higher derivable maps on generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 97-105.
[12] NIU Shao-hua, YANG Gang. n-Gorenstein projective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 44-49.
[13] HAO Hong-yan, LI Yuan. The left-star order for idempotent operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 39-44.
[14] WU De-jun, ZHOU Hui. A characterization of Gorenstein FP-injective modules over triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 86-93.
[15] DING Wen-xu, LI Ying, WANG Dong, ZHAO Jian-li. Solutions of the quaternion matrix equation based on semi-tensor product of matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!