JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (7): 14-21.doi: 10.6040/j.issn.1671-9352.0.2021.321

Previous Articles    

On path(signless)Laplacian spectral radius and energy of graphs

LU Peng-li1, LUAN Rui1, GUO Yu-hong2   

  1. 1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China;
    2. School of Mathematics and Statistics, Hexi University, Zhangye, 734000, Gansu, China
  • Published:2022-06-29

Abstract: Given a graph G with vertex set V(G)={v1,v2,…,vn}, a path matrix associate to G is P(G)=(pij)n×n, pij is the maximum number of interior vertex disjoint paths. The path Laplacian matrix and path signless Laplacian matrix of a connected graph is defined and the bounds of the spectral radius and energy is obtained.

Key words: path matrix, path Laplacian matrix, path signless Laplacian matrix, spectral radius, energy

CLC Number: 

  • O157.5
[1] PATEKAR S C, SHIKARE M M. On the path matrices of graphs and their properties[J]. Adv Appl Discr Math, 2016, 17:169-184.
[2] SHIKARE M M, MALAVADKAR P P, PATEKAR S C, et al. On path eigenvalues and path energy of graphs[J]. MATCH Commun Math Comput Chem, 2018, 79:387-398.
[3] ILIC A, BAŠIC M. Path matrix and path energy of graphs[J]. Applied Mathematics and Computation, 2019, 355:537-541.
[4] AKBARI S, GHODRATI A H, HOSSEINZADEH M A, et al. On the path energy of bicyclic graphs[J]. MATCH Commun Math Comput Chem, 2019, 81:471-484.
[5] WANG Zhao, MAO Yaping, FURTULA B, et al. Bounds for the spectral radius and energy of extended adjacency matrix of graphs[J]. Linear & Multilinear Algebra, 2021, 69(10):1813-1824.
[6] HUANG Peng, LI Jianxi, SHIU W C. Maximizing the signless Laplacian spectral radius of k-connected graphs with given diameter[J]. Linear Algebra and Its Applications, 2021, 617:78-99.
[7] GUO Jining, YU Mengni. A sharp lower bound of the spectral radius with application to the energy of a graph[J]. Discrete Applied Mathematics, 2021, 293:59-63.
[8] PIRZADA S, KHAN S. On distance Laplacian spectral radius and chromatic number of graphs[J]. Linear Algebra and Its Applications, 2021, 625:44-54.
[9] QIN Rui, LI Dan, MENG Jixiang. On the Dα-spectral radius of two types of graphs[J]. Applied Mathematics and Computation, 2021, 396:125898.
[10] BROUWER A E, HAEMERS W H. Spectra of graphs[M]. New York: Springer, 2012.
[11] AKBARI S, GHODRATI A H, GUTMAN I. On path energy of graphs[J]. MATCH Commun Math Comput Chem, 2019, 81:465-470.
[12] FAN K. Maximum properties and inequalities for the eigenvalues of completely continuous operators[J]. Proc Natl Acad Sci, 1951, 37:760-766.
[13] MERCER A M, MERCER P R. Cauchys interlace theorem and lower bounds for the spectral radius[J]. International Journal of Mathematics and Mathematical Sciences, 2000, 23(8):563-566.
[14] BROUWER A E, KOOLEN J H. The vertex-connectivity of a distance-regular graph[J]. Eur J Comb, 2009, 30:668-673.
[15] BROUWER A E, MESNER D M. The connectivity of strongly regular graphs[J]. Eur J Comb, 1985, 6:215-216.
[16] GODSIL C D. Connectivity of minimal Cayley graphs[J]. ARCH Math Basel, 1981, 37:473-476.
[17] WATKINS M E. Connectivity of transitive graphs[J]. J Comb Theory B, 1970, 8:23-29.
[18] GRAHAM R L. Handbook of combinatorics[M]. Cambidge: MIT Press, 1995.
[19] MCCLELLAND B J. Properties of the latent roots of a matrix: the estimation of π-electron energies[J]. J Chem Phys, 1971, 54:640-643.
[1] ZHANG Hai-dong, WANG Wei-zhong. Hermitian-general Randic quasi-Laplacian matrix and Hermitian-general Randic incidence energy of mixed graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 78-84.
[2] WU Yi-fan, WANG Guang-fu. Extremal graphs on distance spectral radius of polyomino chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 84-91.
[3] WANG Zeng-zhen, LIU Hua-yong, ZHA Dong-dong. Progressive-iterative approximation by the triangular β-B curves with shape parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 81-94.
[4] HOU Chun-juan, LI Yuan-fei, GUO Lian-hong. Local existence and blow-up criterion of solutions to a class of generalised incompressible Boussinesq equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 97-102.
[5] LU Chang-na, CHANG Sheng-xiang. Finite element method of Cahn-Hilliard equation based on adaptive moving mesh method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 17-25.
[6] LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28.
[7] JIA Shu-xiang, DENG Bo, YE Cheng-fu, FU Feng, CHEN Hui-long. Description of the upper(lower)bounds of Resolvent Estrada index [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 92-96.
[8] LI Yuan-fei, CHEN Xue-jiao, SHI Jin-cheng. Phragmén-Lindelof alternative for the heat conduction equations in a binary mixture [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 1-12.
[9] MU Na-na, AN Xin-lei, XU Hao-nan. Hidden attractor with two memristors and Hamilton energy control [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 91-97.
[10] WANG Wei-zhong, ZHOU Kun-qiang. On the Hermitian-incidence energy of mixed graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 53-58.
[11] Wei-na XU,Guang-le ZHANG,Shi-hong LI,Yuan-yuan CHEN,Qiang LI,Tao YANG,Ming-min XU,Ning QIAO,Liang-yun ZHANG. Identification of large intergenic non-coding RNAs using random forest [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 85-92, 101.
[12] LIU Xiao-hua, MA Hai-cheng. Order of matching energy and Hosoya index of Q-shape graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 61-65.
[13] WANG Zhi, CHEN Dong-hua, HE Yu-cheng. Research on beamforming design for multi-user full-duplex SWIPT systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 115-120.
[14] DONG Jian-wei, LOU Guang-pu, WANG Yan-ping. Uniqueness of stationary solutions to a simplified energy-transport model for semiconductors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 37-41.
[15] WANG Ying, KONG Wei-shu, HU Lin, SHI Tong-yang, ZHAO Chuang. Energy dissipation of granular block under vertical vibration [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!