JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 17-25.doi: 10.6040/j.issn.1671-9352.0.2021.327
LU Chang-na, CHANG Sheng-xiang
CLC Number:
[1] CAHN J W, HILLIARD J E. Free energy of a nonuniform system(I. Interfacial free energy)[J]. J Chem Phys, 1958, 28(2):258-267. [2] LIU Chun, SHEN Jie. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method[J]. Physica D, 2003, 179(3/4):211-228. [3] SUN Zhizhong. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation[J/OL]. Math Comput, 1995[2021-09-23]. https://doi.org/10.1090/S0025-5718-1995-1308465-4. [4] FENG X B, PROHL A. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits[J/OL]. Math Comput, 2004[2021-09-23]. https://doi.org/10.1090/S0025-5718-03-01588-6. [5] FENG Xinlong, TANG Tao, YANG Jiang. Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models[J]. E Asian J Appl Math, 2013, 3(1):59-80. [6] CHEN Longqing, SHEN Jie. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Comput Phys Commun, 1998, 108(2):147-158. [7] DU Qiang, JU Lili, LI Xiao, et al. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation[J/OL]. J Comput Phys, 2018[2021-09-23]. https://doi.org/10.1016/j.jcp.2018.02.023. [8] LI Dong, QIAO Zhonghua, TANG Tao. Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations[J]. SIAM J Numer Anal, 2016, 54(3):1653-1681. [9] XIA Yinhua, XU Yan, SHU Chiwang. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations[J]. J Comput Phys, 2007, 227(1):472-491. [10] 田明鲁,刘蕴贤.Cahn-Hilliard方程的局部间断Galerkin方法[J]. 山东大学学报(理学版), 2010, 45(8):27-31. TIAN Minglu, LIU Yunxian, The local discontinuous Galerkin method for the Cahn-Hilliard equation[J]. Journal of Shandong University(Natural Science), 2010, 45(8):27-31. [11] MILLER K, MILLER R N. Moving finite elements(I)[J]. SIAM J Numer Anal, 1981, 18(6):1019-1032. [12] DVINSKY A S. Adaptive grid generation from harmonic maps on Riemannian manifolds[J]. J Comput Phys, 1991, 95(2):450-476. [13] HUANG W Z, REN Y H, RUSSELL R D. Moving mesh partial differential equations(MMPDES)based on the equidistribution principle[J]. SIAM J Numer Anal, 1994, 31(3):709-730. [14] CAO W M, HUANG W Z, RUSSELL R D. An r-adaptive finite element method based upon moving mesh PDEs[J]. J Comput Phys, 1999, 149(2):221-244. [15] HUANG W Z, RUSSELL R D. Adaptive mesh movement: the MMPDE approach and its applications[J]. J Comput Appl Math, 2001, 128(1/2):383-398. [16] HUANG W Z, KAMENSKI L. On the mesh nonsingularity of the moving mesh PDE method[J]. Math Comput, 2018, 87:1887-1911. [17] 杨晓波. 求解双曲守恒律和辐射扩散方程的移动网格方法[D].南京:南京大学, 2013. YANG Xiaobo. Moving mesh methods for solving conservation law and radiation diffusion systems[D]. Nanjing: Nanjing University, 2013. [18] LU Changna, HUANG Weizhang, QIU Jianxian. Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems[J]. Numer Math, 2014, 127(3):515-537. [19] NGO C, HUANG W Z. A study on moving mesh finite element solution of the porous medium equation[J/OL]. J Comput Phys, 2017[2021-09-23]. https://doi.org/10.1016/j.jcp.2016.11.045. [20] ZHANG Min, HUANG Weizhang, QIU Jianxian. High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer[J]. SIAM J Sci Comput, 2020, 42(5):A3109-A3135. [21] GONZÁLEZ-PINTO S, MONTIJANO J I, PÉREZ-RODRÍGUEZ S. Two-step error estimators for implicit Runge-Kutta methods applied to stiff systems[J]. ACM T Math Software, 2004, 30(1):1-18. [22] HUANG W Z, RUSSELL R D. Adaptive moving mesh methods[M]. Berlin: Springer Science & Business Media, 2010. [23] SONG Huailing, SHU Chiwang. Unconditional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation[J]. J Sci Comput, 2017, 73(2):1178-1203. |
[1] | WANG Ping-li, SHI Dong-yang. Superconvergence analysis and extrapolation of bilinear finite element for Schrödinger equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 66-71. |
[2] | TIAN Ming-lu, LIU Yun-xian. The local discontiunous Galerkin method for Cahn-Hilliard equation [J]. J4, 2010, 45(8): 27-31. |
|