JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 18-24, 39.doi: 10.6040/j.issn.1671-9352.0.2021.420
Previous Articles Next Articles
Huiling YIN(),Jingrong CHEN*(),Xiaoyan SU
CLC Number:
1 |
SELKOWS M .The independence number of graphs in terms of degrees[J].Discrete Mathematics,1993,122,343-348.
doi: 10.1016/0012-365X(93)90307-F |
2 |
HARANTJ , SCHIERMEYERI .On the independence number of a graph in terms of order and size[J].Discrete Mathematics,2001,232,131-138.
doi: 10.1016/S0012-365X(00)00298-3 |
3 |
LIUXianliang , LUHongliang , WANGWei ,et al.PTAS for the minimum k-path connected vertex cover problem in unit disk graphs[J].Journal of Global Optimization,2013,56(2):449-458.
doi: 10.1007/s10898-011-9831-x |
4 |
KARDOSF , KATRENICJ , SCHIERMEYERI .On computing the minimum 3-path vertex cover and dissociation number of graphs[J].Theoretical Computer Science,2011,412(50):7009-7017.
doi: 10.1016/j.tcs.2011.09.009 |
5 | JAKOVACM , TARANENKOA .On the vertex k-path cover[J].Discrete Applied Mathematics,2013,161(13/14):19431949. |
6 |
BREŠARB , KARDOŠF , KATRENIČJ ,et al.Minimum k-path vertex cover[J].Discrete Applied Mathematics,2011,159(12):1189-1195.
doi: 10.1016/j.dam.2011.04.008 |
7 |
JAKOVACM , TARANENKOA .On the k-path vertex cover of some graph products[J].Discrete Mathematics,2013,313(1):94-100.
doi: 10.1016/j.disc.2012.09.010 |
8 | JAKOVACM .The $k$-path vertex cover of rooted product graphs[J].Discrete Applied Mathematics,2015,187(C):111-119. |
9 | 张㢶㢷. 一些乘积图的k-路顶点覆盖[D]. 天津: 天津师范大学, 2016. |
ZHANG Bitao. The k-path vertex cover of some product graphs[D]. Tianjin: Tianjin Normal University Press, 2016. | |
10 | ZHANGBitao , ZUOLiancui .The k-path vertex cover of some product graphs[J].WSEAS Transactions on Mathematics,2016,15,374-384. |
11 |
LIZhao , ZUOLiancui .The k-path vertex cover in Cartesian product graphs and complete bipartite graphs[J].Applied Mathematics and Computation,2018,331,69-79.
doi: 10.1016/j.amc.2018.03.008 |
[1] | LI Ning, GU Hai-bo, MA Li-na. Existence of solutions for boundary value problems of a class of nonlinear Caputo type sequential fractional differential equations on star graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 22-34. |
[2] | SUO Meng-ge, CHEN Jing-rong, ZHANG Juan-min. k-Path vertex cover in Cartesian product graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 103-110. |
[3] | . Vertex-distinguishing E-total coloring of complete bipartite graph K10,n with 10≤n≤90 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 23-30. |
[4] | LI Shi-ling, CHEN Xiang-en, WANG Zhi-wen. Vertex-Distinguishing E-Total coloring of complete bipartite graph K3,n with n≥18 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 68-71. |
[5] | GAO Chao, HOU Xin-min*. Some remarks on maximum size of bipartite graphs with a given domination number [J]. J4, 2013, 48(8): 21-23. |
[6] | CHEN Hong-yu1,2, ZHANG Li3. Maximum number of edges in connected bipartite graphs with a given domination number [J]. J4, 2012, 47(8): 11-15. |
[7] | YANG Lin1, SUN Lei2*. Some [r,s,t]-chromatic number of graphs [J]. J4, 2012, 47(6): 80-82. |
[8] | LI Zhen-lin, LU Jun-long, L Xin-zhong. On signed edge total domination of graphs [J]. J4, 2012, 47(6): 83-86. |
[9] | CAO Lei1,2, GUO Jia-feng1, CHENG Xue-qi1. Bipartite graph based semi-supervised method for entity mining from the query log [J]. J4, 2012, 47(5): 32-37. |
[10] | DING Lu-shun, YAN Jin. he Z3-connectivity for 3-regular graph [J]. J4, 2012, 47(12): 22-24. |
[11] | LI Ze-peng1, WANG Zhi-wen2, CHEN Xiang-en1*. Adjacent-vertex-distinguishing total coloring of planar bipartite graphs [J]. J4, 2011, 46(4): 4-8. |
[12] | LU Jian-li, CAI Wen-juan. The number of vertex-disjoint 6-cycles containing specified vertices in a balance bipartite graph [J]. J4, 2010, 45(12): 5-11. |
[13] | JU Jing-Song, LI Shuo, YANG Xin-Gang. Degree conditions for bipartite graphs to contain 6-cycles [J]. J4, 2009, 44(8): 13-15. |
[14] | . Vertex distinguishing IEtotal chromatic numbers of complete bipartite graph K5,n [J]. J4, 2009, 44(2): 91-96. |
[15] | . On the spectrum of matching forcing numbers for bipartite graphs [J]. J4, 2009, 44(12): 30-35. |
|